European Journal of Psychology of Education

, Volume 14, Issue 4, pp 555–569 | Cite as

The role of metacognition in the context of integrated strategy intervention



In the present study, the role of metacognition in the context of integrated strategy intervention was examined. The integrated strategy training in reading comprehension, mathematics, and metacognition was carried out over a period of seven months with young 9–10-years-old, 3rd grade elementary school students with learning problems. A pretest-post test design with matched intervention and control groups was applied. Before the intervention, these students and all their classmates had been followed up through 1st to 3rd grade, and tested with multiple cognitive and metacognitive tasks each year. The results showed that early, 1st grade, cognitive-metacognitive differences were strongly associated with later problem solving and reading comprehension proficiency, thus confirming the importance of reading comprehension strategies and metacognition in mathematical problem solving. Further, marked training effects were found. The growth of metacognitive awareness, experiences and self-regulation were observed on the basis of behaviour analyses during the intervention and of post-intervention interviews. However, despite significant training effects, students who were resistant and those who were responsive to training were identified. The results showed that early metacognitive proficiency is closely associated with the responsiveness to training efforts. The nature of metacognitive experiences and the early teaching of metacognitive awareness and self-regulation are emphasised in the conclusions.

Key words

Elementary school children Metacognition Reading comprehension Strategy instruction Word problems 


Les auteurs examinent le rôle de la métacognition dans le contexte d’une intervention sur l’intégration. Un entraînement à l’intégration. Un entraînement à líntégration stratégique en compréhension de lecture, en mathématiques et en métacognition a été conduit pendant une période de sept mois avec des élèves de 9–10 ans de troisième année primaire ayant des difficultés d’apprentissage. On a utilisé un plan d’expérience pré-test/post-test avec deux groupes: un groupe avec l’intervention intégrée et un groupe contrôle. Avant l’intervention, ces élèves et tousleurs condisciples avaient été suivis de la première à la troisième année, et testés chaque année avec de nombreuses tâches cognitives et métacognitives. Les résultats ont montré que, des différences cognitives et métacognitives précoces (dès la première année) sont étroitement associées avec la compétence ultérieure en résolution de problème et en compréhension de lecture, confirmant ainsi l’importance des stratégies de compréhension de lecture et de la métacognition dans la résolution de problèmes mathématiques. On a observé par ailleurs des effets marqués de l’entraînement. Le developpement de la conscience métacognitive, des expériences et de l’auto-régulation ont été observés à partir d’analyses de comportements pendant l’intervention et d’entretiens post-intervention. Cependant, en dépit d’effets significatifs de l’entraînement on a identifié des élèves résistants et des élèves réactifs à l’entrînement. Les résultats ont montré que la compétence métacognitive précoce est étroitement associée avec la réactivité aux efforts d’entraînemet. En conclusion, les auteurs soulignent l’importance des expériences métacognitives et de l’entraînement précoce de la conscience métacognitive et de l’autorégulation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Case, L., Harris, K., & Graham, S. (1992). Improving mathematical problem-solving skills of students with learning disabilities: Self-regulated strategy development.The Journal of Special Education, 26, 1–19.CrossRefGoogle Scholar
  2. Collins, A., Brown, J., & Newman, S. (1989). Cognitive apprenticeship: Teaching the craft of reading, writing, and mathematics. In L. Resnick (Ed.),Knowing, learning, and instruction (pp. 453–494). Hillsdale, NJ: Erbaum.Google Scholar
  3. De Corte, E., & Verschaffel, L. (1987). Using retelling data to students word problem-solving. In J. Sloboda & D. Rogers (Eds.),Cognitive processes in mathematics. London: Oxford University Press.Google Scholar
  4. Fuson, K. (1992). Research on learning and teaching addition and subtraction of whole numbers. In G. Leinhard, R. Putnam, & R. Hattrup (Eds.),Analysis of arithmetic for mathematics teaching. Hillsdale, NJ: Erlbaum.Google Scholar
  5. Garner, R. (1987).Metacognition and reading comprehension. Norwood, NJ: Ablex.Google Scholar
  6. Gaskins, I. (1996). Classroom applications of cognitive science: Teaching poor readers how to learn, think and problem solve. In K. Macgilly (Ed.),Classroom lessons: Integrating cognitive theory and classroom practice (pp. 129–154). Cambridge, MA: MIT Press/Bradford Books.Google Scholar
  7. Juel, C. (1988). Learning to read and write. A longitudinal study of 54 children from first through fourth grades.Journal of Educational Psychology, 80, 437–447.CrossRefGoogle Scholar
  8. Kinnunen, R., Vauras, M., & Niemi, P. (1998). Comprehension monitoring in beginning readers.Scientific Studies in Reading, 2, 353–375.CrossRefGoogle Scholar
  9. Lucangeli, D., Coi, G., & Bosco, P. (1997). Metacognitive awareness in good and poor math problem solvers.Learning Disabilities Research and Practice, 4, 209–212.Google Scholar
  10. Lundberg, I., Frost, J., & Petersen, O-P. (1988). Effects of extensive program for simulating phonological awareness in preschool children.Reading Research Quarterly, 23, 263–284.CrossRefGoogle Scholar
  11. Meichenbaum, D., & Biemiller, A. (1998).Nurturing independent learners. Cambridge, MA: Brookline Books.Google Scholar
  12. Mevarech, A. (1995). Metacognition, general ability, and mathematical understanding.Early Education and Development, 6, 155–168.CrossRefGoogle Scholar
  13. Niemi, P., Poskiparta, E., Vauras, M., & Mäki, H. (1998). Reading and writing difficulties do not always occur as the researcher expects.Scandinavian Journal of Psychology, 39, 159–161.CrossRefGoogle Scholar
  14. Paris, S., Lipson, M., & Wixson, K. (1983). Becoming a strategic reader.Contemporary Educational Psychology, 8, 293–316.CrossRefGoogle Scholar
  15. Poskiparta, E., Vauras, M., & Niemi, P. (1999). Promoting word recognition, spelling and reading comprehension skills in a computer-based training program in grade 2. In P. Reitsma & L. Verhoeven (Eds.),Problems and interventions in literacy development. Amsterdam: Vrije Universiteit.Google Scholar
  16. Pressley, M., Goodchild, F., Fleet, J., Zajchowski, R., & Evans, E. (1989). The challenges of classroom strategy instruction.Elementary School Journal, 89, 301–342.CrossRefGoogle Scholar
  17. Pressley, M., Beard El-Dinary, P., Gaskins, I., Schuder, T., Bergman, J.L., Almasi, J., & Brown, R. (1992). Beyond direct explanation: Transactional instruction in reading comprehension strategies.Elementary School Journal, 92, 511–554.CrossRefGoogle Scholar
  18. Pressley, M., Woloshyn, V., Lysynchuk, L., Martin, V., Eood, E., & Willoughby, T. (1990). A primer of research on cognitive strategy instruction: The important issues and how to address them.Educational Research Review, 2, 1–58.Google Scholar
  19. Rauhanummi, T., & Vauras, M. (submitted). Development of metacognitive knowledge as a function of learning experiences in primary grades.Google Scholar
  20. Schoenfeld, A. (1987). What’s all the fuss about metacognition? In A. Schoenfeld (Ed.),Cognitive science and mathematics education (pp. 185–215). Hillsdale, NJ: Erlbaum.Google Scholar
  21. Stanovich, K. (1986). Mathew effects in reading: Some consequences of individual differences in the acquisition of literacy.Reading Research Quarterly, 21, 360–406.CrossRefGoogle Scholar
  22. Stern, E. (1994). A microgenetic longitudinal study on the acquisition of word problem solving skills. In J. van Luit (Ed.),Research on learning and instruction of mathematics in kindergarten and primary school (pp. 229–241). Doetinchem/Rapallo, The Netherlands: Graviant.Google Scholar
  23. Swanson, H. (1993). An information processing analysis of learning disabled children’s problem-solving.American Educational Research Journal, 4, 861–893.Google Scholar
  24. Vauras, M. (1996).Quest of the Golden Chalice. A game for improving word problem solving (in Finnish). Turku, Finland: University of Turku, Centre for Learning Research.Google Scholar
  25. Vauras, M., Dufva, M., Rauhanummi, T., & Kinnunen, R. (submitted). Integrated strategy training in mathematics and reading comprehension with low-achieving elementary school students.Google Scholar
  26. Vauras, M., Kinnunen, R., Dufva, M., Hämäläinen, S., Mäki, H., & Voeten, M. (1999). Listening and reading comprehension in elementary school students. Unpublished manuscript.Google Scholar
  27. Vauras, M., Kinnunen, R., & Kuusela, L. (1994). Development of learning strategies in high-, average-, and low-achieving primary school children.Journal of Reading Behaviour, 26, 361–389.Google Scholar
  28. Vauras, M., Rauhanummi, T., Kinnunen, R., & Lepola, J. (1999). Motivational vulnerability as a challenge for educational interventions.International Journal of Educational Research, 31, 515–531.CrossRefGoogle Scholar
  29. Verschaffel, L., & De Corte, E. (1994). Word problems: A vehicle for promoting authentic mathematical understanding and problem solving in primary school. In P. Bryant & T. Nunez (Eds.),How do children learn mathematics. Hillsdale, NJ: Erlbaum.Google Scholar
  30. Verschaffel, L., & De Corte, E., & Lasure, S. (1994). Realistic considerations in mathematical modeling of school arithmetic word problems.Learning and Instruction, 4, 273–294.CrossRefGoogle Scholar
  31. Wong, B. (1991). The relevance of metacognition to learning disabilities. In B. Wong (Ed.),Learning about learning (pp. 231–258). San Diego, CA: Academic Press.Google Scholar

Copyright information

© Instituto Superior de Psicologia Aplicada, Lisbon, Portugal/ Springer Netherlands 1999

Authors and Affiliations

  • Marja Vauras
    • 1
  • Riitta Kinnunen
    • 1
  • Tiina Rauhanummi
    • 1
  1. 1.Centre for Learning ResearchUniversity of TurkuTurkuFinland

Personalised recommendations