Advertisement

European Journal of Psychology of Education

, Volume 7, Issue 4, pp 339–352 | Cite as

Designing computer systems to support peer learning

  • Claire O’Malley
Article

Abstract

This article begins with a review of the various roles which computers have played in supporting collaborative learning and argues that, whatever role it plays, technology is not neutral with respect to interactions with and between users. Interfaces to learning environments embody particular representational schemes which have the potential either for competing with representations of the learning domain or for giving access to it. In this respect, the learner-machine interface has ‘Epistemic significance’ and its design is as important as the design of the materials and activities to which it interfaces.

Key words

Computer support Interface design Peer interaction Physics instruction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amigues, R., & Caillot, M. (1990). Graphical representations in the teaching and learning of electricity.European Journal of Psychology of Education, 5, 477–488.CrossRefGoogle Scholar
  2. Bamberger, J. (1983).The computer as sandcastle (Technical Report N.o 20). New York: Bank Street College of Education.Google Scholar
  3. Blaye, A. (1988).Confrontation socio-cognitive et résolution de problème. Unpublished doctoral thesis, University of Provence, France.Google Scholar
  4. Blaye, A. & Light, P. (in press). Collaborative problem solving with HyperCard: the influence of peer interaction on planning and information handling strategies. In C. E. O’Malley (Ed.),Computer supported collaborative learning. Heidelberg: Springer-Verlag.Google Scholar
  5. Boyle, E., & Anderson, A. (1992).When a face is worth a thousand words: a comparison of communication with and without facial information. Unpublished.Google Scholar
  6. Brown, J. S. (1990). Toward a new epistemology for learning. In C. Frasson & G. Gauthier (Eds.),Intelligent Tutoring Systems: At the Crossroads of Artificial Intelligence and Education, (pp. 266–282). Norwood, NJ: Ablex.Google Scholar
  7. Chan, T. W., & Baskin, A. B. (1990). Learning companion systems. In C. Frasson & G. Gauthier (Eds.),Intelligent Tutoring Systems: At the Crossroads of Artificial Intelligence and Education, (pp. 6–33). Norwood, NJ: Ablex.Google Scholar
  8. Colbourn, C. J., & Light, P. H. (1987). Social interaction and learning usng micro-PROLOG.Journal of Computer Assisted Learning, 3, 130–140.CrossRefGoogle Scholar
  9. Crook, C. (1987). Computers in the classroom: defining a social context. In J. Rutkowska & C. Crook (Eds.),Computers, Cognition and Development: Issues for Psychology and Education, (pp. 35–53). Chichester: Wiley.Google Scholar
  10. Dillenbourg, P., & Self, J. (1992). People Power: a human-computer collaborative learning system. In C. Frasson, G. Gauthier, & G. I. McCalla (Eds.),Intelligent Tutoring Systems, (pp. 651–660). Proceedings of the 2nd International Conference on Intelligent Tutoring Systems, Montréal, June 1992. Heidelberg: Springer-Verlag.Google Scholar
  11. DiSessa, A. (1989). Knowledge in pieces. In G. Forman & P. B. Pufall (Eds.),Constructivism in the Computer Age, (pp. 49–70). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  12. Donaldson, M. (1978).Children’s Minds. London: Fontana Press.Google Scholar
  13. Draper, S. W. (1986). Display managers as the basis for user-machine communication. In D. A. Norman & S. W. Draper (Eds.),User Centered System Design: New Perspectives on Human-Computer Interaction, (pp. 339–352). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  14. Fletcher, B. (1985). Group and individual learning of junior school children on a microcomputer based task.Educational Review, 37, 251–261.CrossRefGoogle Scholar
  15. Forman, E., & Cazden, C. (1983). Exploring Vygotskian perspectives in education: the cognitive value of peer interaction. In J. Wertsch (Ed.),Culture, Communication and Cognition. Cambridge: Cambridge University Press.Google Scholar
  16. Fraisse, J. (1987). Etude du rôle pertubateur du partenaire dans la découverte d’une stratégie cognitive chez des enfants de 11 ans en situation d’interaction sociale.Bulletin de Psychologie, 382, 943–952.Google Scholar
  17. Frye, D., & Soloway, E. (1987). Interface design: a neglected issue in educational software. In J. M. Carroll & P. P. Tanner (Eds.),Human Factors in Computing Systems and Graphics Interface, (pp. 93–97). Proceedings of CHI+GI 1987 Conference, Toronto, April 1987, New York: ACM.CrossRefGoogle Scholar
  18. Gauvain, M., & Rogoff, B. (1989). Collaborative problem-solving and children’s planning skills.Developmental Psychology, 25, 139–151.CrossRefGoogle Scholar
  19. Hennessy, S., Twigger, D., Driver, R., O’Shea, T., O’Malley, C., Byard, M. Draper, S., Hartley, R., Mohamed, R., & Scanlon, E. (in press, a). Design of a computer-augmented curriculum for mechanics.International Journal of Science Education.Google Scholar
  20. Hennessy, S., Twigger, D., Driver, R., O’Shea, T., O’Malley, C., Byard, M., Draper, S., Hartley, R., Mohamed, R., & Scanlon, E. (in press, b). A classroom intervention using a computer-augmented curriculum for mechanics.International Journal of Science Education.Google Scholar
  21. Henri, F. (in press). Distance learning and computer-mediated communication: interactive, quasi-interactive or monologue? In C. E. O’Malley (Ed.),Computer Supported Collaborative Learning. Heidelberg: Springer-Verlag.Google Scholar
  22. Hiltz, S. R. (1988). Collaborative learning in a virtual classroom: highlights of findings.Proceedings of the 1988 Conference on Computer-Supported Cooperative Work, (pp. 282–290). Portland, Oregon, September 1988. New York: ACM.Google Scholar
  23. Howe, C., Tolmie, A., & MacKenzie, M. (in press). Computer support for the collaborative learning of physics concepts. In C. E. O’Malley (Ed.),Computer supported collaborative learning Heidelberg: Springer-Verlag.Google Scholar
  24. Hughes, M., & Greenhough, P. (1989). Gender and social interaction in early LOGO use. In J. H. Collins, N. Estes, W. D. Gattis, & D. Walker (Eds.),Proceedings of the 6th Annual Conference on Technology and Education, (Vol. 1). Edinburgh: CEP.Google Scholar
  25. Hutchins, E. (1990). Learning to navigate in context. In J. Galegher, R. E. Kraut, & C. Egido (Eds.),Intellectual Teamwork.Google Scholar
  26. Jackson, A., Fletcher, B., & Messer, D. J. (1986). A survey of microcomputer use and provision in primary schools.Journal of Computer Assisted Learning, 2, 45–55.CrossRefGoogle Scholar
  27. Johnson, R. T., Johnson, D. W., & Stanne, M. B. (1975). Effects of co-operative, competitive and individualistic goal structures on computer-assisted instruction.Journal of Educational Psychology, 77, 668–677.CrossRefGoogle Scholar
  28. Johnson-Laird, P. N., & Wason, P. C. (1977). A theoretical analysis of insight into a reasoning task. In P. N. Johnson-Laird & P. C. Wason (Eds.),Thinking: Readings in Cognitive Science, (pp. 143–157). Cambridge: Cambridge University Press.Google Scholar
  29. Kaye, A. (in press). Computer-supported collaborative learning in a multi-media distance education environment. In C. E. O’Malley (Ed.), Computer supported collaborative learning. Heidelberg: Springer-Verlag.Google Scholar
  30. Lewis, C., & Norman, D. A. (1986). Designing for error. In D. A. Norman & S. W. Draper (Eds.),User Centered System Design: New Perspectives on Human-Computer Interaction, (pp. 411–432). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  31. Light, P., & Blaye, A. (1990). Computer-based learning: the social dimensions. In H. C. Foot, M. J. Morgan, & R. H. Shute (Eds.),Children Helping Children (pp.135–147),Chichester:Wiley.Google Scholar
  32. Light, P., Colbourn, C., & Smith, D. (1987). Peer interaction and logic programming: a study of the acquisition of microPROLOG. Occasional Paper No.ITE/17/87, ESRC Information Technology and Education Programme.Google Scholar
  33. Light, P. H., Foot, H., Colbourn, C., & McClelland, I. (1987). Collaborative interactions at the microcomputer keyboard.Educational Psychology, 7, 13–21.CrossRefGoogle Scholar
  34. Mason, R., & Kaye, A. (1989) (Eds.)Mindweave: Communication, Computers and Distance Education. Oxford: Pergamon Press.Google Scholar
  35. McCloskey, M. (1983). Naive theories of motion. In D. Gentner & A. L. Stevens (Eds.),Mental Models (pp. 299–324). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  36. Miyake, N. (1986). Constructive interaction and the iterative process of understanding.Cognitive Science, 10, 151–177.CrossRefGoogle Scholar
  37. Newman, D. (in press). Technology’s role in restructuring for collaborative learning. In C. E. O’Malley (Ed.),Computer supported collaborative learning. Heidelberg: Springer-Verlag.Google Scholar
  38. Newman, D., Griffin, P., & Cole, M. (1989).The Construction Zone: Working for Cognitive Change in School. Cambridge: Cambridge University Press.Google Scholar
  39. Norman, D. A. (1986). Cognitive engineering. In D. A. Norman & S. W. Draper (Eds.),User Centered System Design: New Perspectives on Human-Computer Interaction (pp. 31–61). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  40. Norman, D. A. (1991). Cognitive artifacts. In J. M. Carroll (Eds.),Designing Interaction: Psychology at the Human-Computer Interface (pp. 17–38). Cambridge: Cambridge University Press.Google Scholar
  41. O’Malley, C. (1990). Interface issues for guided discovery learning environments. In M. T. Elsom-Cook (Ed.),Guided Discovery Tutoring: A Framework for ICAI Research (pp. 24–41). London: Paul Chapman Publishing.Google Scholar
  42. Payne, L. J., & O’Malley, C. (1992).Computer simulated peer interaction in the learning of physics. Unpublished manuscript, Department of Psychology, University of Nottingham.Google Scholar
  43. Payne, S. J. (1991). Interface problems and interface resources. In J. M. Carroll (Ed.),Designing Interaction: Psychology at the Human-Computer Interface (pp. 128–153). Cambridge: Cambridge University Press.Google Scholar
  44. Roschelle, J., & Teasley, S. (in press). The construction of shared knowledge in collaborative problem solving. In C. E. O’Malley (Ed.),Computer supported collaborative learning. Heidelberg: Springer-Verlag.Google Scholar
  45. Rubtsov, V. V. (1991).Learning in Children: Organization and Development of Cooperative Actions. New York: Nova Science Publishers.Google Scholar
  46. Sheingold, K. (1987). The microcomputer as a symbolic medium. In R. D. Pea & K. Sheingold (Eds.),Mirrors of Minds: Patterns of Experience in Educational Computing, (pp. 198–208). Norwood, NJ: Ablex.Google Scholar
  47. Siann, G., & Macleod, H. (1986). Computers and children of primary school age: issues and questions.British Journal of Educational Technology, 17, 133–144.CrossRefGoogle Scholar
  48. Smith, R. B. (1990). The Alternate Reality Kit: an animated environment for creating interactive simulations. In O. Boyd-Barrett & E. Scanlon (Eds.),Computers and Learning. Addison-Wesley.Google Scholar
  49. Smith, R., O’Shea, T., O’Malley, C., Scanlon, E., & Taylor, J. (1991). Preliminary experiments with a distributed, multi-media, problem solving environment. In J. M. Bowers & S. D. Benford (Eds.),Studies in Computer Supported Cooperative Work: Theory, Practice and Design (pp. 31–48). Amsterdam: Elsevier Science Publishers.Google Scholar
  50. Spelke, E. S. (1991). Physical knowledge in infancy: reflections on Piaget’s theory. In S. Carey & R. Gelman (Eds.),The Epigenesis of Mind: Essays on Biology and Cognition, (pp. 133–169). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  51. Spiro, R. J., Feltovich, P. J., Coulson, R. L., & Anderson, D. K. (1989). Multiple analogies for complex concepts: antidotes for analogy-induced misconception in advanced knowledge acquisition. In S. Vosniadou & A. Ortony (Eds.),Similarity and Analogical Reasoning (pp. 498–531). Cambridge: Cambridge University Press.Google Scholar
  52. Trowbridge, D. (1987). An investigation of groups working at the computer. In K. Berge, K. Pezdek, & W. Banks (Eds.),Applications of Cognitive Psychology: Problem Solving, Education and Computing. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  53. Twigger, D., Byard, M., Draper, S., Driver, R., Hartley, R., Hennessy, S., Mallen, C., Mohamed, R., O’Malley, C., O’Shea, T., & Scanlon, E. (1991). The ‚Conceptual Change in Science’ project.Journal of Computer Assisted Learning, 7, 144–155.CrossRefGoogle Scholar
  54. Underwood, J. D. M., & Underwood, G. (1990).Computers and Learning: Helping Children Acquire Thinking Skills. Oxford: Blackwell.Google Scholar
  55. Underwood, G., McCaffrey, M., & Underwood, J. D. (1990). Gender differences in a co-operative computer-based language task.Educational Research, 32, 16–21.Google Scholar
  56. Verba, M., & Winnykamen, F. (1992). Expert-novice interactions: influence of partner status.European Journal of Psychology of Education, 7, 61–71.CrossRefGoogle Scholar
  57. Wenger, E. (1987).Artificial Intelligence and Tutoring Systems: Computational and Cognitive Approaches to the Communication of Knowledge. Los Altos, CA: Morgan Kaufmann.Google Scholar

Copyright information

© Instituto Superior de Psicologia Aplicada, Lisbon, Portugal/ Springer Netherlands 1992

Authors and Affiliations

  • Claire O’Malley
    • 1
  1. 1.Department of PsychologyUniversity of Nottingham, University ParkNottinghamUK

Personalised recommendations