Skip to main content
Log in

Properties of rankine-hugoniot curves for van der Waals fluids

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We consider the Euler system made of three conservation laws modeling one-dimensional, inviscid, compressible fluid flows. Considering first a general equation of state, we reformulate the standard condition that the specific entropy be increasing at a shock, The new formulation turns out to be easier to check in concrete examples when searching for admissible shock waves. Then, restricting attention to van der Waals fluids, we first determine regions in the phase space in which the system is hyperbolic or elliptic, or fails to be genuinely nonlinear. Second, based on our reformulation of the entropy condition, we provide a complete description of all admissible shock waves, classified in two distinct categories: thecompressive shocks satisfying standard (Liu, Lax) entropy criteria, andundercompressive shocks violating these criteria and requiring a kinetic relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abeyaratne and J.K. Knowles, Kinetic relations and the propagation of phase boundaries in solids. Arch. Rational Mech. Anal.,114 (1991), 119–154.

    Article  MATH  MathSciNet  Google Scholar 

  2. H.-T. Fan, A vanishing viscosity approach on the dynamics of phase transitions in van der Waals fluids. J. Differential Equations,103 (1993), 179–204.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Hattori, The Riemann problem for a van der Waals fluid with the entropy rate admissibility criterion: isothermal case. Arch. Rational Mech. Anal.,92 (1986), 246–263.

    Article  MathSciNet  Google Scholar 

  4. H. Hattori, The Riemann problem for a van der Waals type fluid with entropy rate admissibility criterion — Nonisothermal case. J. Differential Equations,65 (1986) 158–174.

    Article  MATH  MathSciNet  Google Scholar 

  5. P.D. Lax, Shock wave and entropy. Contributions to Functional Analysis (ed. E.A. Zarantonello), Academic Press, New York, 1971, 603–634.

    Google Scholar 

  6. P.G. LeFloch, Hyperbolic Systems of Conservation Laws: The theory of classical and nonclassical Shock Waves. Lecture Notes in Mathematics, ETH Zuerich, Birkhäuser, 2002.

    Google Scholar 

  7. P.G. LeFloch and M.D. Thanh, Nonclassical Riemann solvers and kinetic relations I. An hyperbolic model of elastodynamics. ZAMP,52 (2001), 597–619.

    Article  MATH  Google Scholar 

  8. P.G. LeFloch and M.D. Thanh, Nonclassical Riemann solvers and kinetic relations II. An hyperbolic-elliptic model of phase transitions. Proc. Roy. Soc. Edinburgh, Sect. A,132, No. 1 (2002), 181–219.

    Article  MATH  MathSciNet  Google Scholar 

  9. P.G. LeFloch and M.D. Thanh, Nonclassical Riemann solvers and kinetic relations III. A nonconvex hyperbolic model for van der Waals fluids. Elec. J. Diff. Eqs.,72 (2000), 1–19.

    Google Scholar 

  10. T.-P. Liu, The Riemann problem for general 3×3 conservation laws. Trans. Amer. Math. Soc.,199 (1974), 89–113.

    Article  MATH  MathSciNet  Google Scholar 

  11. T.-P. Liu, The Riemann problem for general systems of conservation laws. J. Differential Equations,18 (1975), 218–234.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Menikoff and B. Plohr, The Riemann problem for fluid flow of real materials. Rev. Modern Phys.,61 (1989), 75–130.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Slemrod, Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Rational Mech. Anal.,81 (1983), 301–315.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Slemrod, Dynamic phase transitions in a van der Waals fluid. J. Differential Equations,52 (1984), 1–23.

    Article  MATH  MathSciNet  Google Scholar 

  15. L. Truskinovsky, Critical nuclei in the van der Waals model. Dokl. Akad. Nauk SSSR,269 (1983), 587–592 (in Russian).

    MathSciNet  Google Scholar 

  16. B. Wendroff, The Riemann problem for materials with non-convex equations of state. I. Isentropic flow. J. Math. Anal. Appl.,38 (1972), 454–466.

    Article  MATH  MathSciNet  Google Scholar 

  17. B. Wendroff, The Riemann problem for materials with non-convex equations of state II: General flow. J. Math. Anal. Appl.,38 (1972), 640–658.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe G. LeFloch.

About this article

Cite this article

LeFloch, P.G., Thanh, M.D. Properties of rankine-hugoniot curves for van der Waals fluids. Japan J. Indust. Appl. Math. 20, 211 (2003). https://doi.org/10.1007/BF03170427

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1007/BF03170427

Key words

Navigation