A singular perturbation problem arising in Oseen’s spiral flows

  • H. Ikeda
  • M. Mimura
  • H. Okamoto


Oseen’s spiral flows for viscous incompressible fluid are considered. Their limiting behavior as the Reynolds number tends to infinity is rigorously analyzed and the width of the interior layer is proved to be of O(R−1/2), whereR is the Reynolds number.

Key words

Navier-Stokes equations interior layer exact solution 


  1. [1]
    M. Abramowitz and I.A. Stegun (eds.), Handbook of Mathematical Functions. Dover, 1970.Google Scholar
  2. [2]
    R. Berker, Intégration des équations du mouvement d’un fluide visqueux incompressible. Handbuch der Physik (Vol.VIII/2), 1963, 1–384.Google Scholar
  3. [3]
    H. Ikeda, Stability characteristics of transition layer solutions. J. Dynam. Diff. Eqns.,5 (1993), 625–671.MATHCrossRefGoogle Scholar
  4. [4]
    D.F. Lawden, Elliptic Functions and Applications. Springer-Verlag, 1989.Google Scholar
  5. [5]
    H. Okamoto, Localization of singularities in inviscid limit — numerical examples. Proceedings of Navier-Stokes Equations: Theory and Numerical Methods (ed. R. Salvi), Longman, Pitman Research Notes in Mathematics Series388, 1998, 220–236.Google Scholar
  6. [6]
    C.W. Oseen, Exacte Lösungen der hydrodynamischen Differentialgleichungen. I. Ark. Mat. Astronom. Fysik,20, No. 14 (1928), 1–24; II. (ibid), No.22 (1928), 1–9.Google Scholar
  7. [7]
    E.T. Whittaker and G.N. Watson, A Course of Modern Analysis (Fourth Ed.). Cambridge Univ. Press, 1927.Google Scholar

Copyright information

© JJIAM Publishing Committee 2001

Authors and Affiliations

  • H. Ikeda
    • 1
  • M. Mimura
    • 2
  • H. Okamoto
    • 3
  1. 1.Department of MathematicsFaculty of Science, Toyama UniversityToyamaJapan
  2. 2.Department of Mathematical and Life SciencesGraduate School of Science, Hiroshima UniversityHigashi-HiroshimaJapan
  3. 3.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan

Personalised recommendations