Skip to main content
Log in

Theoretical analysis of Nedelec’s edge elements

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

The Nedelec edge elements are now widely used for numerical analysis of various electromagnetic problems. However, it has not been easy to show their mathematical validity since the formulations associated with the edge elements are usually based on some mixed variational principles on special function spaces. In particular case of the simplest Nedelec simplex elements, the present author formerly showed the discrete compactness which plays essential roles in theoretical analysis of such elements. Here we present some new results on such a property for more general edge elements using an approach slightly different from that employed by Boffi to obtain results on the same subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Adams, Sobolev Spaces. Academic Press, 1975.

  2. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Meth. Appl. Sci.,21 (1998), 823–864.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Boffi, Fortin operator and discrete compactness for edge elements. Numer. Math.,87 (2000), 229–246.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Boffi, P. Fernandes, L. Gastaldi and I. Perugia, Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal.,36 (1999), 1264–1290.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Bossavit, Computational Electromagnetism: Variational Formulations, Complementary, Edge Elements. Academic Press, 1998.

  6. C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, 1994.

  7. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, 1991.

  8. S. Caorsi, P. Fernandes and M. Raffetto, On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal.,38 (2000), 580–607.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Caorsi, P. Fernandes and M. Raffetto, Approximation of electromagnetic eigenproblems: a general proof of convergence for edge finite elements of any order of both Nedelec’s families. CNR-IMA, Technical Report No. 16/99, Genova, Italy, 1999.

  10. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, 1978.

  11. M. Costabel and M. Dauge, Maxwell and Lamé eigenvalues on polyhedra. Math. Meth. Appl. Sci.,22 (1999), 243–258.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Duvault and J.-L. Lions, Inequalities in Mechanics and Physics. Springer-Verlag, 1976.

  13. J. Descloux, N. Nassif and J. Rappaz, On spectral approximation. Part 2. Error estimates for the Galerkin method. RAIRO, Analyse Numerique,12 (1978), 113–119.

    MATH  MathSciNet  Google Scholar 

  14. P. Fernandes and M. Raffetto, The question of spurious modes revisited. Int. Compumag Soc. Newsletter,7, No. 1 (2000), 5–8.

    Google Scholar 

  15. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, 1986.

  16. P. Joly, C. Poirier, J.E. Robert and P. Trouve, A new nonconforming finite element method for the computation of electromagnetic guided waves I: mathematical analysis. SIAM J. Numer. Anal.,33 (1996), 1494–1525.

    Article  MATH  MathSciNet  Google Scholar 

  17. F. Kikuchi, Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. Computer Meth. Appl. Mech. Engng.,64 (1987), 509–521.

    Article  MATH  MathSciNet  Google Scholar 

  18. F. Kikuchi, On a discrete compactness property for the Nedelec finite elements. J. Fac. Sci., Univ. Tokyo, Sect. IA Math.,36 (1989), 479–490.

    MATH  MathSciNet  Google Scholar 

  19. F. Kikuchi, Weak formulations for finite element analysis of an electromagnetic eigenvalue problem. Sci. Papers of Coll. Arts & Sci., The Univ. Tokyo,38 (1988), 43–67.

    MathSciNet  Google Scholar 

  20. F. Kikuchi, Discrete compactness of the linear rectangular Nedelec element. Abstracts of Presentations at 1999 Spring Meeting of Math. Soc. Japan, 1999, 108–111.

  21. F. Kikuchi, Theoretical aspects of Nedelec’s edge elements applied to electromagnetic problems. ICIAM ’99. Proceedings of the 4th International Congress on Industrial and Applied Mathematics (eds. J.M. Ball and J.C.R. Hunt), Oxford University Press, 2000.

  22. F. Kikuchi and M. Fukuhara, An iterative method for finite element analysis of magnetostatic problems. Advances in Numerical Mathematics (eds. T. Ushijima, Z.-C. Shi and T. Kako), Kinokuniya, 1995, 93–105.

  23. F. Kikuchi, M. Yamamoto and H. Fujio, Theoretical and computational aspects of Nedelec’s edge elements for electromagnetics. Computational Mechanics — New Trends and Applications (eds. E. Oñate and S.R. Idelsohn), © CIMNE, Barcelona, Spain, 1998.

    Google Scholar 

  24. J.-C. Nedelec, Mixed finite elements in R3. Numer. Math.,35 (1980), 315–341.

    Article  MATH  MathSciNet  Google Scholar 

  25. J.-C. Nedelec, A new family of mixed finite elements in R3. Numer. Math.,50 (1986), 57–81.

    Article  MATH  MathSciNet  Google Scholar 

  26. P.P. Silvester and R.L. Ferrari, Finite Elements for Electrical Engineers (3rd edn.). Cambridge Univ. Press, 1996.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumio Kikuchi.

About this article

Cite this article

Kikuchi, F. Theoretical analysis of Nedelec’s edge elements. Japan J. Indust. Appl. Math. 18, 321–333 (2001). https://doi.org/10.1007/BF03168578

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03168578

Key words

Navigation