Journal of Physiology and Biochemistry

, Volume 64, Issue 2, pp 115–125 | Cite as

Chronic ouabain treatment increases the contribution of nitric oxide to endothelium-dependent relaxation

  • R. Aras-López
  • J. Blanco-Rivero
  • R. Hernanz
  • A. M. Briones
  • L. V. Rossoni
  • M. Ferrer
  • M. Salaices
  • G. Balfagon


The aim of this study was to analyze the contribution of nitric oxide, prostacyclin and endothelium-dependent hyperpolarizing factor to endothelium-dependent vasodilation induced by acetylcholine in rat aorta from control and ouabain-induced hypertensive rats. Preincubation with the nitric oxide synthase inhibitor N-omega-nitro-l-arginine methyl esther (L-NAME) inhibited the vasodilator response to acetylcholine in segments from both groups but to a greater extent in segments from ouabain-treated rats. Basal and acetylcholine-induced nitric oxide release were higher in segments from ouabain-treated rats. Preincubation with the prostacyclin synthesis inhibitor tranylcypromine or with the cyclooxygenase inhibitor indomethacin inhibited the vasodilator response to acetylcholine in aortic segments from both groups. The Ca2+-dependent potassium channel blocker charybdotoxin inhibited the vasodilator response to acetylcholine only in segments from control rats. These results indicate that hypertension induced by chronic ouabain treatment is accompanied by increased endothelial nitric oxide participation and impaired endothelium-dependent hyperpolarizing factor contribution in acetylcholine-induced relaxation. These effects might explain the lack of effect of ouabain treatment on acetylcholine responses in rat aorta.


Nitric oxide Endothelial-dependent hyperpolarizing factor Prostacyclin Acetylcholine 

El tratamiento crónico con ouabaína incrementa la contribución del óxido nítrico a la relajación dependiente de endotelio


Se analiza en este trabajo la contribución del óxido nítrico, la prostaciclina y el factor hiperpolarizante dependiente de endotelio (EDHF) en la vasodilatación inducida por acetilcolina en aorta de ratas controles y con hipertensión inducida por ouabaína. La preincubación con el inhibidor de la óxido nítrico sintasa N-omega-nitro-L-arginina metil éster (L-NAME) inhibió la respuesta vasodilatadora a acetilcolina en segmentos de ambos grupos experimentales, pero en mayor medida en los de ratas tratadas con ouabaína. La liberación de óxido nítrico basal e inducida por acetilcolina fue mayor en segmentos de animales tratados con ouabaína. La preincubación con tranilcipromina, inhibidor de la prostaciclina sintasa, y con indometacina, inhibidor de la ciclooxigenasa, inhibió la respuesta vasodilatadora a acetilcolina en segmentos de aorta de ambos grupos experimentales. El bloqueante de los canales de potasio dependientes de Ca2+, charibdotoxina, inhibió la respuesta vasodilatadora a acetilcolina sólo en segmentos de animales control. Estos resultados indican que la hipertensión inducida por el tratamiento crónico con ouabaína se acompaña de aumento en la participación del óxido nítrico endotelial y de disminución del efecto del EDHF mediado por canales de potasio dependientes de Ca2+ en la relajación inducida por acetilcolina. Estos efectos opuestos podrían explicar el hecho de que el tratamiento con ouabaína no modifique la respuesta a la acetilcolina.

Palabras clave

Óxido nítrico Factor hiperpolarizante dependiente de endotelio Prostaciclina Acetilcolina 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Álvarez de Sotomayor, M., Pérez-Guerrero, C., Herrera, MD. and Marhuenda, E. (1999): Effects of chronic treatment with simvastatin on endothelial dysfunction in spontaneously hypertensive rats. J Hypertens, 17, 769–776.CrossRefPubMedGoogle Scholar
  2. 2.
    Boeynaems, JM, Ramboer, I. (1989): Effects of changes in extra- and intracellular K+ on the endothelial production of prostacyclin. Br J Pharmacol, 98, 966–972.PubMedGoogle Scholar
  3. 3.
    Bolad, I. and Delafontaine, P. (2005): Endothelial dysfunction: its role in hypertensive coronary disease. Curr Opin Cardiol, 20, 270–274.CrossRefPubMedGoogle Scholar
  4. 4.
    Bolotina, V.M., Najibi, S., Palacino, J.J., Pagano, P.J., Cohen, R.A. (1994): Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature, 368, 850–853.CrossRefPubMedGoogle Scholar
  5. 5.
    Boulanger, C.M. (1999): Secondary endothelial dysfunction: hypertension and heart failure. J Mol Cell Cardiol, 31, 39–49.CrossRefPubMedGoogle Scholar
  6. 6.
    Bryan, R.M., Jr., You, J., Golding, E.M. and Marrelli, S.P. (2005): Endothelium-derived hyperpolarizing factor: a cousin to nitric oxide and prostacyclin. Anesthesiology, 102, 1261–1277.CrossRefPubMedGoogle Scholar
  7. 7.
    Busse, R., Edwards, G., Féletou, M., Fleming, I., Vanhoutte, P.M. and Weston, A.H. (2002): EDHF: bringing the concepts together. Trends Pharmacol Sci, 23, 374–380.CrossRefPubMedGoogle Scholar
  8. 8.
    Callera, G.E., Varanda, W.A. and Bendhack, L.M. (2000): Impaired relaxation to acetylcholine in 2K-1C hypertensive rat aortas involves changes in membrane hyperpolarization insted of an abnormal contribution of endothelial factors. Gen Pharmacol, 34, 379–389.CrossRefPubMedGoogle Scholar
  9. 9.
    Di Filippo, C., Filippelli, A., Rinaldi, B., Fiegari, E., Esposito, F., Rossi, F. and D’amico, M. (2003): Chronic peripheral ouabain treatment affects the brain endothelin system of rats. J Hypertens, 21, 747–753.CrossRefPubMedGoogle Scholar
  10. 10.
    Ferrandi, M., Manunta, P., Ferrari, P. and Bianchi, G. (2005): The endogenous ouabain: molecular basis of its role in hypertension and cardiovascular complications. Front Biosci, 10, 2472–2477.CrossRefPubMedGoogle Scholar
  11. 11.
    Garland, C.J., Plane, F., Kemp, B.K., Cocks, T.M. (1995): Endothelium-dependent hyperpolarization: a role in the control of vascular tone. Trends Pharmacol Sci, 16, 23–30.CrossRefPubMedGoogle Scholar
  12. 12.
    Huang, B.S., Huang, X., Harmsen, E. and Leenin, F.H.H. (1994): Chronic central versus peripheral ouabain, blood pressure, and sympathetic activity in rats. Hypertension, 23, 1087–1090.PubMedGoogle Scholar
  13. 13.
    Kimura, K., Manunta, P., Hamilton, B.P. and Hamlyn, J.M. (2000): Different effects of in vivo ouabain and digoxin on renal artery function and blood pressure in the rat. Hypertens Res, 23, S67-S76.CrossRefPubMedGoogle Scholar
  14. 14.
    Munzel, T., Daiber, A., Ullrich, V., and Mulsch, A. (2005): Vascular consequences of endothelial nitric oxide synthase uncoupling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase. Arterioscler Thromb Vasc Biol, 25, 1551–1557.CrossRefPubMedGoogle Scholar
  15. 15.
    Nagakawa, M., Takamatsu, H., Toyoda, T., Sawada, S., Tsuji, Ha. and Ijichi, H. (1987): Effect of inhibition of Na+−K+-ATPase on the prostacyclin generation of cultured human vascular endothelial cells. Life Sci, 40, 351–357.CrossRefGoogle Scholar
  16. 16.
    Nakayama, T. (2005): Prostacyclin synthase gene: genetic polymorphisms and prevention of some cardiovascular diseases. Curr Med Chem Cardiovasc Hematol Agents, 3(2), 157–164.CrossRefPubMedGoogle Scholar
  17. 17.
    Nava, E., Noll, G. and Lüscher, T.F. (1995): Increased activity of constitutive nitric oxide synthase in cardiac endothelium in spontaneous hypertension. Circulation, 91, 2310–2313.PubMedGoogle Scholar
  18. 18.
    Nielsen, K.C., Owman, C. (1971): Contractile response and amine receptor mechanisms in isolated middle cerebral artery of the cat. Brain Res, 27, 33–42.CrossRefPubMedGoogle Scholar
  19. 19.
    Pacheco, M.E., Marín, J., Manso, A.M., Rodríguez-Martínez, M.A., Briones, A., Salaices, M. and Redondo, J. (2000): Nitric oxide synthase induction by ouabain in vascular smooth muscle cells from normotensive and hypertensive rats. J Hypertens, 18, 877–884.CrossRefPubMedGoogle Scholar
  20. 20.
    Rossoni, L.V., Cunha, V., Franca, A., Vassallo, D.V. (1999): The influence of nanomolar ouabain on vascular pressor responses is modulated by the endothelium. J Cardiovasc Pharmacol, 34, 887–892.CrossRefPubMedGoogle Scholar
  21. 21.
    Rossoni, L.V., Salaices, M., Marín, J., Vassallo, D.V. and Alonso, M.J. (2002): Alterations in phenylephrine-induced contractions and the vascular expression of Na+, K+-ATPase in ouabain-induced hypertension. Br J Pharmacol, 135, 771–781.CrossRefPubMedGoogle Scholar
  22. 22.
    Rossoni, L.V., Salaices, M., Miguel, M., Briones, A.M., Barker, L.A., Vasallo, D.V. and Alonso, M.J. (2002): Ouabain-induced hypertension is accompanied by increases in endothelial vasodilator factors. Am J Physiol Heart Circ Physiol, 283, H2110-H2118.PubMedGoogle Scholar
  23. 23.
    Saxena, N.C., Fan, J.S. and Tseng, G.N. (1997): Effects of elevating [Na]i on membrane currents of canine ventricular myocytes: role of intracellular Ca ions. Cardiovasc Res, 33, 548–560.CrossRefPubMedGoogle Scholar
  24. 24.
    Schoner, W. and Scheiner-Bobis, G. (2005): Endogenous cardiac glycosides: hormones using the sodium pump as signal transducer. Semin Nephrol, 25, 343–351.CrossRefPubMedGoogle Scholar
  25. 25.
    Shimokawa, H. and Takeshita, A. (1995): Endothelium-dependent regulation of the cardiovascular system. Intern Med, 34, 939–946.CrossRefPubMedGoogle Scholar
  26. 26.
    Taddei, S., Ghiadoni, L., Virdis, A., Buralli, S. and Salvetti, A. (1999): Vasodilatation to bradykinin is mediated by an ouabain-sensitive pathway as a compensatory mechanism for impaired nitric oxide availability in essential hypertensive rats. Circulation, 100, 1400–1405.PubMedGoogle Scholar
  27. 27.
    Thuillez, C. and Richard, V. (2005): Targeting endothelial dysfunction in hypertensive subjects. J Hum Hypertens, 19, S21-S25.CrossRefPubMedGoogle Scholar
  28. 28.
    Vanhoutte, P.M. (1996): Endothelial dysfunction in hypertension. J Hypertens, 14, S83-S93.CrossRefGoogle Scholar
  29. 29.
    Vaziri, N.D., Ni, Z. and Oveisi, F. (1998): Upregulation of renal and vascular nitric oxide synthase in young spontaneously hypertensive rats. Hypertension, 31, 1248–1254.PubMedGoogle Scholar
  30. 30.
    Vázquez-Pérez, S., Navarro-Cid, J., De Las Heras, N., Cediel, E., Sanz-Rosa, D., Ruilope, L.M., Cachofeiro, V. and Lahera, V. (2001): Relevance of endothelium-derived hyperpolarizing factor in the effects of hypertension on rat coronary relaxations. J Hypertens, 19, 539–545.CrossRefPubMedGoogle Scholar
  31. 31.
    Woodman, O. L. and Boujaoude, M. (2004): Chronic treatment of male rats with daidzein and 17β-oestradiol induces the contribution of EDHF to endothelium-dependent relaxation. Br J Pharmacol, 41, 322–328.CrossRefGoogle Scholar
  32. 32.
    Xavier, F.E., Rossoni, L.V., Alonso, M.J., Balfagon, G., Vassallo, D.V. and Salaices, M. (2004): Ouabain-induced hypertension alters the participation of endothelial factor in α-adrenergic responses differently in rat resistance and conductance mesenteric arteries. Br J Pharmacol, 143, 215–225.CrossRefPubMedGoogle Scholar
  33. 33.
    Xie, J., Wang, Y., Summer, W.R. and Greenberg, S.S. (1993): Ouabain enhances basal release of nitric oxide from carotid artery. Am J Med Sci, 305, 157–163.CrossRefPubMedGoogle Scholar
  34. 34.
    Yuan, C., Manunta, P., Chen, S., Hamlyn, J.M., Haddy, F.J. and Pamnani, M.V. (1993): Role of ouabain-like factors in hypertension: effects of ouabain and certain endogenous oaubain-like factors in hypertension. J Cardiovasc Pharmacol, 22, S10-S12.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang, J. and Leenen, F.H. (2001): AT(1) receptor blockers prevent sympathetic hyperactivity and hypertension by chronic ouabain and hypertonic saline. Am J Physiol Heart Circ Physiol, 280, H1318-H1323.PubMedGoogle Scholar

Copyright information

© Universidad de Navarra 2008

Authors and Affiliations

  • R. Aras-López
    • 1
  • J. Blanco-Rivero
    • 1
  • R. Hernanz
    • 2
  • A. M. Briones
    • 2
  • L. V. Rossoni
    • 3
  • M. Ferrer
    • 1
  • M. Salaices
    • 2
  • G. Balfagon
    • 1
  1. 1.Departamentos de FisiologíaUniversidad Autónoma de MadridMadridSpain
  2. 2.Farmacología y Terapéutica, Facultad de MedicinaUniversidad Autónoma de MadridMadridSpain
  3. 3.Department of Physiology and Biophysics, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil

Personalised recommendations