Gröbner basis and the problem of contiguous relations

  • Nobuki Takayama


It is a classical problem to find contiguous relations of hypergeometric functions of several variables. Recently Kametaka [11] and Okamoto [15] have developed the theory of hypergeometric solutions of the Toda equation. We need to find the explicit formulas of contiguous relations (or ladders) to construct the hypergeometric solutions of the Toda equation explicitly. We present an algorithm to obtain contiguous relations of hypergeometric functions of several variables. The algorithm is based on Buchberger’s algorithm [3] on the Gröbner basis.

Key words

hypergeometric function of several variables Toda equation contiguous relation Gröbner basis computer algebra 


  1. [1]
    D. A. Bayer, The division algorithm and the Hilbert scheme. Ph. D. thesis, Harvard Univ., 1982.Google Scholar
  2. [2]
    G. M. Bergman, The Diamond Lemma for Ring Theory. Adv. in Math.,29 (1978), 178–218.CrossRefMathSciNetGoogle Scholar
  3. [3]
    B. Buchberger, Ein Algorithmus zum Auffinden der Basiselements des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph. D. Thesis, Univ. Innsbruck, Austria, 1965.Google Scholar
  4. [4]
    B. Buchberger, Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems. Aequationes Math.,4 (1970), 374–383.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    B. Buchberger, A theoretical basis for the reduction of polynomials to canonical forms. ACM SIGSAM Bull.,39 (1976), 19–29.MathSciNetGoogle Scholar
  6. [6]
    B. Buchberger and R. Loos, Algegraic simplification. Computing Suppl.,4 (1982), 11–43.Google Scholar
  7. [7]
    A. Erdélyi et al., Higher Transcendental Functions. MacGraw-Hill, New York, 1953.Google Scholar
  8. [8]
    A. Furukawa, T. Sasaki and H. Kobayashi, Gröbner basis of a module overK[x 1,...,x n] and polynomial solutions of a system of linear equations. ISBN ACM 0-89791-199-7, 1986, 222–224.Google Scholar
  9. [9]
    A. Galligo, Some algorithmic questions on ideals of differential operators. Lecture Note in Comput. Sci.,204, 1985, 413–421.MathSciNetGoogle Scholar
  10. [10]
    K. Iwasaki, Riemann function of harmonic equation and Appell’sF 4. SIAM J. Math. Anal.,1 9 (1988), 902–917.CrossRefMathSciNetGoogle Scholar
  11. [11]
    Y. Kametaka, Hypergeometric solutions of Toda equation. RIMS Kokyuroku,554, 1985, 26–46.Google Scholar
  12. [12]
    T. Kimura, Hypergeometric functions of two variables, Seminar Note Series of Univ. Tokyo, 1972.Google Scholar
  13. [13]
    W. Miller, Jr., Lie theory and generalizations of hypergeometric functions. SIAM J. Appl. Math.,25 (1973), 226–235.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    H. M. Möller and F. Mora, New constructive methods in classical ideal theory. J. Algebra,100 (1986), 138–178.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    K. Okamoto, Sur les échelles associées aux fonctions spéciales et l’équation de Toda. J. Fac. Sci., Univ. Tokyo, Sec. IA Math.,34 (1987), 709–740.zbMATHGoogle Scholar
  16. [16]
    N. Takayama, Euler-Poisson-Darboux equation, Harmonic equation and special functions of several variables. To appear in Proceedings of “La théorie des équations différentielles dans le champ complex”, Strasbourg, 1985.Google Scholar
  17. [17]
    G. Zacharias, Generalized Gröbner basis in commutative polynomial rings. Bachelor Thesis, M.I.T. Dept. Comput. Sci., 1978.Google Scholar

Copyright information

© JJAM Publishing Committee 1989

Authors and Affiliations

  • Nobuki Takayama
    • 1
  1. 1.Department of Mathematics and Computer ScienceTokushima UniversityTokushimaJapan

Personalised recommendations