Advertisement

Characterizations of semantic domains for randomized algorithms

  • Shinichi Yamada
Article
  • 21 Downloads

Abstract

Randomized algorithms, or probabilistic algorithms, extend the notion of algorithm by introducing input of random data and random choices in the process of computation. A new mathematical theory of the semantic domains for randomized algorithms, or randomized domains, is developed, which intrinsically extends Scott’s domain theory for deterministic computation. Main results include the characterization theorems and practical axiom systems for randomized domains, and the construction of the universal reflexive randomized domainR . The theory readily provides denotational semantics for a class of high level probabilistic programming languages and is also directly applicable to probabilistic logics, inductive inference, and theory of stochastic programming.

Key words

randomized algorithm randomized domains denotational semantics probabilistic programming languages 

References

  1. [1]
    H. P. Barendregt, The Lambda Calculus, Its Syntax and Semantics. Revised Ed., North-Holland, Amsterdam, 1984.Google Scholar
  2. [2]
    N. Bourbaki, Intégration. 2eme éd., Hermann, Paris, 1965.zbMATHGoogle Scholar
  3. [3]
    K. de Leeuw, E. F. Moore, C. E. Shannon and N. Shapiro, Computability by probabilistic machines. Automata Studies (eds. C. E. Shannon and J. McCarthy), Ann. of Math. Studies34, Princeton Univ. Press, Princeton, N. J., 1956, 183–212.Google Scholar
  4. [4]
    N. Dunford and J. T. Schwartz, Linear Operators. Part 1. Interscience, New York, 1958.Google Scholar
  5. [5]
    D. F. Escrig, Some probabilistic powerdomains in the category SFP. Lecture Notes in Computer Science,210, Springer, Berlin/Heidelberg, 1986, 49–59.Google Scholar
  6. [6]
    D. H. Fremlin, Topological Riesz Spaces and Measure Theory. Cambridge Univ. Press, Cambridge/New York, 1974.zbMATHGoogle Scholar
  7. [7]
    G. Gierz et al., A Compendium of Continuous Lattices. Springer, Berlin/Heidelberg/New York, 1980.zbMATHGoogle Scholar
  8. [8]
    J. T. Gill, Computational complexity of probabilistic Turing machines. SIAM J. Comput.6 (1977), 675–695.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    B. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Reading, Mass., 1954.zbMATHGoogle Scholar
  10. [10]
    P. R. Halmos, Measure Theory, Van Nostrand, Princeton, N. J., 1950.zbMATHGoogle Scholar
  11. [11]
    S. Kakutani, Concrete Representation of Abstract (M)-Spaces (A characterization of the space of continuous functions). Ann. of Math.,42 (1941), 994–1024.CrossRefMathSciNetGoogle Scholar
  12. [12]
    R. M. Karp, The probabilistic analysis of some combinatorial search algorithms. Algorithms and Complexity (ed. J. F. Traub), Academic Press, New York, 1976, 1–20.Google Scholar
  13. [13]
    S. C. Kleene, Introduction to Metamathematics. D. Van Nostrand, Princeton, N. J., 1952.zbMATHGoogle Scholar
  14. [14]
    D. Kozen, Semantics of probabilistic programs. J. Comput. System Sci.,22 (1981), 328–350.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    J. Lambek and P. J. Scott, Introduction to Higher Order Categorical Logic. Cambridge Univ. Press, Cambridge, 1986.zbMATHGoogle Scholar
  16. [16]
    G. Ja. Lozanovskij, On Banach lattices and bases. Funkcional. Anal. i Priložen.,1(3) (1967) 92 (in Russian).Google Scholar
  17. [17]
    W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces I. North-Holland, Amsterdam/London, 1971.zbMATHGoogle Scholar
  18. [18]
    J. McCarthy, A basis for a mathematical theory of computation. Computer Programming and Formal Systems (eds. P. Braffort and D. Hirschberg), North-Holland, Amsterdam, 1963, 33–70.CrossRefGoogle Scholar
  19. [19]
    P. Meyer-Nieberg, Zur schwachen Kompaktheit in Banachverbänden. Math. Z.,134 (1973), 303–315.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    K. Parthasarathy, Probability Measures on Metric Spaces. Academic Press, New York, 1967.zbMATHGoogle Scholar
  21. [21]
    G. D. Plotkin, A power domain construction. SIAM J. Comput.,5 (1976), 452–487.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    M. O. Rabin, Probabilistic algorithms. Algorithms and Complexity (ed. J. F. Traub), Academic Press, New York, 1976, 21–40.Google Scholar
  23. [23]
    H. Rogers, Jr., Theory of Recursive Functions and Effective Computability. McGraw-Hill, N. Y., 1967.zbMATHGoogle Scholar
  24. [24]
    J. G. Sanderson, The Lambda Calculus, Lattice Theory and Reflexive Domains. Math. Inst. Lecture Notes, Univ. Oxford, Oxford, 1973.Google Scholar
  25. [25]
    E. S. Santos, Probabilistic Turing machines and computability. Proc. Amer. Math. Soc.,22 (1969), 704–710.zbMATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    E. S. Santos, Computability by probabilistic Turing machines. Trans. Amer. Math. Soc.,159 (1971), 165–184.zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    V. V. Sazonov, On perfect measures. Mat. Sb.,55 (1961), Amer. Math. Soc. Transl. Ser. 2,48 (1965), 229–254.Google Scholar
  28. [28]
    H. H. Schaefer, Banach Lattices and Positive Operators. Springer, Berlin/Heidelberg/New York, 1974.zbMATHGoogle Scholar
  29. [29]
    L. Schwartz, Random Measures on Arbitrary Topological Spaces and Cylindrical Measures. Tata Inst. Fundamental Research, Oxford Univ. Press, London, 1973.Google Scholar
  30. [30]
    H. U. Schwarz, Banach Lattices and Operators. Teubner, Leipzig, 1984.zbMATHGoogle Scholar
  31. [31]
    D. S. Scott, Outline of a mathematical theory of computation. Proc. 4th Princeton Conf. on Inform. Sci. and Systems, 1970, 169–176.Google Scholar
  32. [32]
    D. S. Scott, Continuous lattices. Lecture Notes in Math.,274, Springer, 1972, 97–136.Google Scholar
  33. [33]
    D. S. Scott, Data types as lattices. SIAM J. Comput.,5 (1976), 522–587.zbMATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    J. C. Shepherdson and H. E. Sturgis, Computability of recursive functions. J. Assoc. Comput. Math.,10 (1963), 217–255.zbMATHMathSciNetGoogle Scholar
  35. [35]
    J. E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. The MIT Press, Cambridge, Mass., 1977.Google Scholar
  36. [36]
    S. Yamada, The Sciences of Information Processing. Asakura-Shoten, Tokyo, 1984 (in Japanese).Google Scholar
  37. [37]
    S. Yamada, A Mathematical Theory of Randomized Computation and Its Mathematical Foundations. D. Sc. Thesis, Univ. Tokyo, December, 1987.Google Scholar
  38. [38]
    A. C. Zaanen, Riesz Spaces II. North-Holland, Amsterdam/New York/Oxford, 1983.zbMATHGoogle Scholar

Copyright information

© JJAM Publishing Committee 1989

Authors and Affiliations

  • Shinichi Yamada
    • 1
    • 2
  1. 1.Department of Mathematics, School of Science and EngineeringWaseda UniversityShinjuku, TokyoJapan
  2. 2.Research & Advanced TechnologyNihon Unisys, Ltd.TokyoJapan

Personalised recommendations