Skip to main content
Log in

Characterizations of semantic domains for randomized algorithms

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

Abstract

Randomized algorithms, or probabilistic algorithms, extend the notion of algorithm by introducing input of random data and random choices in the process of computation. A new mathematical theory of the semantic domains for randomized algorithms, or randomized domains, is developed, which intrinsically extends Scott’s domain theory for deterministic computation. Main results include the characterization theorems and practical axiom systems for randomized domains, and the construction of the universal reflexive randomized domainR . The theory readily provides denotational semantics for a class of high level probabilistic programming languages and is also directly applicable to probabilistic logics, inductive inference, and theory of stochastic programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. P. Barendregt, The Lambda Calculus, Its Syntax and Semantics. Revised Ed., North-Holland, Amsterdam, 1984.

    Google Scholar 

  2. N. Bourbaki, Intégration. 2eme éd., Hermann, Paris, 1965.

    MATH  Google Scholar 

  3. K. de Leeuw, E. F. Moore, C. E. Shannon and N. Shapiro, Computability by probabilistic machines. Automata Studies (eds. C. E. Shannon and J. McCarthy), Ann. of Math. Studies34, Princeton Univ. Press, Princeton, N. J., 1956, 183–212.

    Google Scholar 

  4. N. Dunford and J. T. Schwartz, Linear Operators. Part 1. Interscience, New York, 1958.

  5. D. F. Escrig, Some probabilistic powerdomains in the category SFP. Lecture Notes in Computer Science,210, Springer, Berlin/Heidelberg, 1986, 49–59.

    Google Scholar 

  6. D. H. Fremlin, Topological Riesz Spaces and Measure Theory. Cambridge Univ. Press, Cambridge/New York, 1974.

    MATH  Google Scholar 

  7. G. Gierz et al., A Compendium of Continuous Lattices. Springer, Berlin/Heidelberg/New York, 1980.

    MATH  Google Scholar 

  8. J. T. Gill, Computational complexity of probabilistic Turing machines. SIAM J. Comput.6 (1977), 675–695.

    Article  MATH  MathSciNet  Google Scholar 

  9. B. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Reading, Mass., 1954.

    MATH  Google Scholar 

  10. P. R. Halmos, Measure Theory, Van Nostrand, Princeton, N. J., 1950.

    MATH  Google Scholar 

  11. S. Kakutani, Concrete Representation of Abstract (M)-Spaces (A characterization of the space of continuous functions). Ann. of Math.,42 (1941), 994–1024.

    Article  MathSciNet  Google Scholar 

  12. R. M. Karp, The probabilistic analysis of some combinatorial search algorithms. Algorithms and Complexity (ed. J. F. Traub), Academic Press, New York, 1976, 1–20.

    Google Scholar 

  13. S. C. Kleene, Introduction to Metamathematics. D. Van Nostrand, Princeton, N. J., 1952.

    MATH  Google Scholar 

  14. D. Kozen, Semantics of probabilistic programs. J. Comput. System Sci.,22 (1981), 328–350.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Lambek and P. J. Scott, Introduction to Higher Order Categorical Logic. Cambridge Univ. Press, Cambridge, 1986.

    MATH  Google Scholar 

  16. G. Ja. Lozanovskij, On Banach lattices and bases. Funkcional. Anal. i Priložen.,1(3) (1967) 92 (in Russian).

    Google Scholar 

  17. W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces I. North-Holland, Amsterdam/London, 1971.

    MATH  Google Scholar 

  18. J. McCarthy, A basis for a mathematical theory of computation. Computer Programming and Formal Systems (eds. P. Braffort and D. Hirschberg), North-Holland, Amsterdam, 1963, 33–70.

    Chapter  Google Scholar 

  19. P. Meyer-Nieberg, Zur schwachen Kompaktheit in Banachverbänden. Math. Z.,134 (1973), 303–315.

    Article  MATH  MathSciNet  Google Scholar 

  20. K. Parthasarathy, Probability Measures on Metric Spaces. Academic Press, New York, 1967.

    MATH  Google Scholar 

  21. G. D. Plotkin, A power domain construction. SIAM J. Comput.,5 (1976), 452–487.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. O. Rabin, Probabilistic algorithms. Algorithms and Complexity (ed. J. F. Traub), Academic Press, New York, 1976, 21–40.

    Google Scholar 

  23. H. Rogers, Jr., Theory of Recursive Functions and Effective Computability. McGraw-Hill, N. Y., 1967.

    MATH  Google Scholar 

  24. J. G. Sanderson, The Lambda Calculus, Lattice Theory and Reflexive Domains. Math. Inst. Lecture Notes, Univ. Oxford, Oxford, 1973.

    Google Scholar 

  25. E. S. Santos, Probabilistic Turing machines and computability. Proc. Amer. Math. Soc.,22 (1969), 704–710.

    Article  MATH  MathSciNet  Google Scholar 

  26. E. S. Santos, Computability by probabilistic Turing machines. Trans. Amer. Math. Soc.,159 (1971), 165–184.

    Article  MATH  MathSciNet  Google Scholar 

  27. V. V. Sazonov, On perfect measures. Mat. Sb.,55 (1961), Amer. Math. Soc. Transl. Ser. 2,48 (1965), 229–254.

  28. H. H. Schaefer, Banach Lattices and Positive Operators. Springer, Berlin/Heidelberg/New York, 1974.

    MATH  Google Scholar 

  29. L. Schwartz, Random Measures on Arbitrary Topological Spaces and Cylindrical Measures. Tata Inst. Fundamental Research, Oxford Univ. Press, London, 1973.

    Google Scholar 

  30. H. U. Schwarz, Banach Lattices and Operators. Teubner, Leipzig, 1984.

    MATH  Google Scholar 

  31. D. S. Scott, Outline of a mathematical theory of computation. Proc. 4th Princeton Conf. on Inform. Sci. and Systems, 1970, 169–176.

  32. D. S. Scott, Continuous lattices. Lecture Notes in Math.,274, Springer, 1972, 97–136.

  33. D. S. Scott, Data types as lattices. SIAM J. Comput.,5 (1976), 522–587.

    Article  MATH  MathSciNet  Google Scholar 

  34. J. C. Shepherdson and H. E. Sturgis, Computability of recursive functions. J. Assoc. Comput. Math.,10 (1963), 217–255.

    MATH  MathSciNet  Google Scholar 

  35. J. E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. The MIT Press, Cambridge, Mass., 1977.

    Google Scholar 

  36. S. Yamada, The Sciences of Information Processing. Asakura-Shoten, Tokyo, 1984 (in Japanese).

  37. S. Yamada, A Mathematical Theory of Randomized Computation and Its Mathematical Foundations. D. Sc. Thesis, Univ. Tokyo, December, 1987.

  38. A. C. Zaanen, Riesz Spaces II. North-Holland, Amsterdam/New York/Oxford, 1983.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The contents of this paper is based on the D. Sc. dissertation of the author submitted to the University of Tokyo, Dec., 1987.

About this article

Cite this article

Yamada, S. Characterizations of semantic domains for randomized algorithms. Japan J. Appl. Math. 6, 111–146 (1989). https://doi.org/10.1007/BF03167919

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167919

Key words

Navigation