On self-affine functions II

  • Norio Kôno


We parametrize continuous self-affine functions defined in [3] and represent them by the infinite sum. We also give a necessary and sufficient condition so that a self-affine function has absolutely continuous distribution with respect to the Lebesgue measure. Moreover we discuss surface filling functions defined by two self-affine functions and compare these with those constructed by D. Hilbert [4].

Key words

self-affine function self-similarity surface filling function 


  1. [1]
    H. Furstenberg and H. Kesten, Products of random matrices. Ann. Math. Statist.,31 (1968), 457–469CrossRefMathSciNetGoogle Scholar
  2. [2]
    T. Kamae, A characterization of self-affine functions. Japan J. Appl. Math.,3 (1986), 271–280.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    N. Kôno, On self-affine functions. Japan J. Appl. Math.,3 (1986), 259–269.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    D. Hilbert, Ueber die stetige Abbildung einer linie auf ein Flächenstück. Math. Ann.,38 (1891), 459–460.CrossRefMathSciNetGoogle Scholar
  5. [5]
    G. Peano, Sur une courbe, qui remplit toute une aire plane. Math. Ann.,36 (1890), 157–160.CrossRefMathSciNetGoogle Scholar
  6. [6]
    J. Bertoin, Sur la mesure d’occupation d’une classe de fonctions self-affines. Pre-print.Google Scholar

Copyright information

© JJAM Publishing Committee 1988

Authors and Affiliations

  • Norio Kôno
    • 1
  1. 1.Institute of Mathematics, Yoshida CollegeKyoto UniversityKyotoJapan

Personalised recommendations