Skip to main content
Log in

Existence and stability of transition layers

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

Abstract

For a second order nonautonomous singularly perturbed ordinary differential equation with Neumann boundary conditions, the existence of single transition layer solutions is proved by using the method of Liapunov-Schmidt. The method also gives the stability of these solutions as an equilibrium point of a parabolic equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. B. Angenent, J. Mallet-Paret and L. A. Peletier, Stable transition layers in a semilinear boundary value problem. J. Differential Equations,67 (1987), 212–242.

    Article  MATH  MathSciNet  Google Scholar 

  2. S.-N. Chow and J. K. Hale, Methods of Bifurcation Theory. Grundl. Math. Wiss., Vol. 251, Springer-Verlag.

  3. P. C. Fife, Transition layers in singular perturbation problems. J. Differential Equations,15 (1974), 77–105.

    Article  MATH  MathSciNet  Google Scholar 

  4. P. C. Fife, Boundary and interior transition layer phenomena for pairs of second order differential equations. J. Math. Anal. Appl.,54 (1976), 497–521.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Fujii and Y. Nishiura, Stability of singularly perturbed solutions to systems of reaction diffusion equations. Proc. Japan Acad.,61 (1985), 329–332. Complete proofs in KSU/ICS, 85-05, Inst. Computer Sci. Kyoto Sangyo Univ.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Fusco and J. K. Hale, Stable equilibria in a scalar parabolic equation with variable diffusion. SIAM J. Math. Anal.,16 (1985), 152–164.

    Article  MathSciNet  Google Scholar 

  7. J. K. Hale, Introduction to dynamic bifurcation. Bifurcation Theory and Applications (Ed. L. Salvadori), Lecture Notes in Math., Vol. 1057, Springer-Verlag, 106–151.

  8. J. K. Hale and C. Rocha, Bifurcations in a parabolic equation with variable diffusion. Nonlinear Anal. TMA,9 (1985), 479–494.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Ito, A remark on singular perturbation methods. Hiroshima Math. J.,14 (1984), 619–629.

    Google Scholar 

  10. C. Jones, Stability of the travelling waves solution of the Fitz-Hugh-Nagumo equations. Trans. Amer. Math. Soc.,286 (1984), 431–469.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sci., Kyoto Univ.,15 (1979), 401–454.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Mimura, M. Tabata and Y. Hosono, Multiple solutions of two point boundary value problems of Neumann type with a small parameter. SIAM J. Math. Anal.,11 (1980), 613–631.

    Article  MATH  MathSciNet  Google Scholar 

  13. C. Rocha, Generic properties of equilibria of reaction diffusion equations with variable diffusion. Proc. Roy. Soc. Edinburgh,101A (1985), 45–55.

    MathSciNet  Google Scholar 

  14. C. Rocha, Examples of attractors in scalar reaction-diffusion equations. J. Differential Equations, Submitted.

  15. K. Sakamoto, Construction and stability analysis of transition layer solutions in reaction-diffusion systems. To appear.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by the Army Research Office under contract # DAAL03-86-K-0074, the Air Force Office of Scientific Research under contract # AF: OSR-84-0376, and the National Science Foundation under contract # DMS-8507056.

About this article

Cite this article

Hale, J.K., Sakamoto, K. Existence and stability of transition layers. Japan J. Appl. Math. 5, 367–405 (1988). https://doi.org/10.1007/BF03167908

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167908

Key words

Navigation