Ball-convergence theorems and error estimates for certain iterative methods for nonlinear equations

  • Tetsuro Yamamoto
  • Xiaojun Chen


This paper provides three ball-convergence theorems as well as error estimates for certain iterative methods for solving nonlinear equations with nondifferentiable operators in Banach spaces. The results generalize and deepen those of Kantorovich [6], Mysovskii [8], Rheinboldt [10], Dennis [3], Yamamoto [12–15] and Zabrejko-Nguen[16].

Key words

nonlinear equations with nondifferentiable operators certain iterative methods ball-convergence theorems error estimates 


  1. [1]
    X. Chen and T. Yamamoto, Convergence domains of certain iterative methods for solving nonlinear equations. Numer. Funct. Anal. Optim.,10(1989), 37–48.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    X. Chen and T. Yamamoto, A necessary and sufficient condition for convergence of certain iterative methods for nonlinear equations. Numerical Mathematics, Singapore, 1988 (Proceedings of the Int’l Conference held at the National Univ. of Singapore) (eds. R.P. Agarwal, et al.), ISNM Vol 86, Birkhauser Verlag, Basel, 1988.Google Scholar
  3. [3]
    J.E. Dennis, On the convergence of Newton-like methods. Numerical Methods for Nonlinear Algebraic Equations (ed. P. Rabinowitz), Gordon and Breach, New York, 1970, 163–181.Google Scholar
  4. [4]
    P. Deuflhard and G. Heindl, Affine invariant, convergence theorems for Newton’s method and extensions to related methods. SIAM J. Numer. Anal.,16(1979), 1–10.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    W.B. Gragg and R.A. Tapia, Optimal error bounds for the Newton-Kantorovich theorem. SIAM J. Numer. Anal.,11(1974), 10–13.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    L.V. Kantorovich, On Newton’s method for functional equations (Russian). Dokl. Akad. Nauk SSSR,59(1948), 1237–1240.Google Scholar
  7. [7]
    H.J. Kornstaedt, Funktionalungleichungen und Iterationsverfahren. Aequationes Math.,13(1974), 21–45.CrossRefMathSciNetGoogle Scholar
  8. [8]
    I. Mysovskii, On the convergence of L.V. Kantorovich’s method of solution of functional equations and its applications (Russian). Dokl. Akad. Nauk SSSR,70(1950), 565–568.Google Scholar
  9. [9]
    L.B. Rall, A note on the convergence of Newton’s method SIAM J. Numer. Anal.,11(1974), 34–36.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    W.C. Rheinboldt, A unified convergence theory for a class of iterative process. SIAM J. Numer. Anal.,5(1968), 42–63.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    W.C. Rheinboldt, An adaptive continuation process for solving systems of nonlinear equations. Mathematical Methods and Numerical Methods (eds. A.N. Tikhonov and others), Banach Center Publications3, Warszawa Pwn-Polish Scientific Publishers, 1978, 129–142.Google Scholar
  12. [12]
    T. Yamamoto, Error bounds for Newton-like methods under Kantorovich type assumptions. Japan J. Appl. Math.,3(1986), 295–313.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    T. Yamamoto, A method for finding sharp error bounds for Newton’s method under the Kantorovich assumptions. Numer. Math.,49(1986), 203–220.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    T. Yamamoto, A convergence theorem for Newton-like methods in Banach spaces. Numer. Math.,51(1987), 545–557.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    T. Yamamoto, A note on a posteriori error bound of Zabrejko and Nguen, for Zincenko’s iteration. Numer. Funct. Anal. Optim.,9(1987), 987–994.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    P.P. Zabrejko and D.F. Nguen, The majorant method in the theory of Newton-Kantorovich approximations and the Pták error estimates. Numer. Funct. Anal. Optim.,9(1987), 671–684.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    A.I. Zincenko, Some approximate methods of solving equations with nondifferentiable operators (Ukrainian). Dopovidi Akad. Nauk Ukrain. RSR (1963), 156–161.Google Scholar

Copyright information

© JJAM Publishing Committee 1990

Authors and Affiliations

  • Tetsuro Yamamoto
    • 1
  • Xiaojun Chen
    • 2
  1. 1.Department of Mathematics, Faculty of ScienceEhime UniversityMatsuyamaJapan
  2. 2.Department of MathematicsXi’an Jiaotong UniversityXi’anChina

Personalised recommendations