Skip to main content
Log in

Stability properties of traveling pulse solutions of the higher dimensional FitzHugh-Nagumo equations

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

Abstract

We consider theN-dimensional FitzHugh-Nagumo (FHN) equations for which there exist planar traveling pulse solutions propagating in the 1-dimensional direction. It is shown that such planar solutions are exponentially stable under small disturbances. The methods used here are the theory ofC o-semigroup and the spectral analysis of the linearized stability criterion for the 1-dimensional FHN equations. Furthermore, we numerically demonstrate how spiral patterns evolve from planar traveling pulses under suitably large disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Evans, Nerve axon equations, I: Linear approximations. Indiana Univ. Math. J.,21 (1972), 877–885.

    Article  MATH  Google Scholar 

  2. J. W. Evans, Nerve axon equations, II: Stability at rest. Indiana Univ. Math. J.,22 (1972), 75–90.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. W. Evans, Nerve axon equations, III: Stability of the nerve impulse. Indiana Univ. Math. J.,22 (1972), 577–593.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. W. Evans, Nerve axon equations, IV: The stable and the unstable impulse. Indiana Univ. Math. J.,24 (1975), 1169–1190.

    Article  MATH  Google Scholar 

  5. P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes in Biomath., Vol. 28, Spring-Verlag, Berlin and New York, 1979.

    MATH  Google Scholar 

  6. P. C. Fife, Propagator-controller systems and chemical patterns. Non-equilibrium Dynamics in Chemcal Systems (eds. C. Vidal and A. Pacault). Springer-Verlag, Berlin and New York, 1984.

    Google Scholar 

  7. P. C. Fife, Understanding the patterns in the BZ reagent. J. Statist. Phys.,39 (1985), 687–702.

    Article  MathSciNet  Google Scholar 

  8. P. C. Fife and J. B. McLeod, The approach of solutions of the nonlinear diffusion equation to traveling wave solutions. Arch. Rational Mech. Anal.65 (1977), 335–361.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. FitzHugh, Impulses and physiological states in models of nerve membrane. Biophys. J.,1 (1961), 445–466.

    Article  Google Scholar 

  10. S. P. Hastings, On the existence of homoclinic and periodic orbits for the FitzHugh-Nagumo equations. Quart. J. Math., Oxford Ser.27 (1976), 123–134.

    Article  MATH  MathSciNet  Google Scholar 

  11. D. Henry, Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math., Vol. 840, Springer-Verlag, Berlin and New York, 1981.

    MATH  Google Scholar 

  12. H. Ikeda, M. Mimura and T. Tsujikawa, Slow traveling wave solutions to the Hodgkin-Huxley equations. Lecture Notes in Numer. Appl. Anal.,9, (1987), 1–73.

    MathSciNet  Google Scholar 

  13. M. Ito, Traveling train solutions of FitzHugh-Nagumo systems. Lecture Notes in Numer. Appl. Anal.,9 (1987), 75–104.

    Google Scholar 

  14. C. Jones, Stability of the travelling wave solution of the FitzHugh-Nagumo system. Trans. Amer. Math. Soc.,286 (1984), 431–469.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. P. Keener, A geometrical theory for spiral waves in excitable media. SIAM J. Appl. Math.,46 (1986), 1039–1056.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. P. Keener and J. J. Tyson, Spiral waves in the Belousov-Zhabotinskii reaction. Phys.21D (1986), 307–324.

    MathSciNet  Google Scholar 

  17. G. Klaasen and W. Troy, The stability of travelling wave front solutions of a reaction-diffusion system. SIAM J. Appl. Math.,41 (1981), 145–167.

    Article  MATH  MathSciNet  Google Scholar 

  18. B. Ya. Kogan, V. S. Zykov and A. A. Petrov, Computer simulations of stimulative media. Simulation of Systems IMACS Congress, Serento, preprints, 1979.

  19. K. Maginu, Existence and stability of periodic travelling wave solutions to Nagumo’s nerve equation. J. Math. Biol.,10 (1980), 133–153.

    MATH  MathSciNet  Google Scholar 

  20. A. S. Mikhailov and V. I. Krinskii, Rotating spiral waves in excitable media: the analytical results. Phys.,9D (1983), 346–371.

    MathSciNet  Google Scholar 

  21. S. C. Müller, T. Plesser and B. Hess, Distinctive sites in chemical waves: The spiral core and the collision area of two annuli. J. Statist. Phys.,48 (1987), 991–1004.

    Article  Google Scholar 

  22. J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. IRE50 (1964), 2061–2070.

    Article  Google Scholar 

  23. D. H. Sattinger, On the stability of waves of nonlinear parabolic systems. Adv. in Math.,22 (1976), 312–355.

    Article  MATH  MathSciNet  Google Scholar 

  24. D. H. Sattinger, Weighted norms for the stability of travelling waves. J. Differential Equations,25 (1977), 130–144.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. J. Tyson and P. C. Fife, Target patterns in a realistic model of the Belousov-Zhabotinskii reaction. J. Chem. Phys.,73 (1980), 2224–2237.

    Article  MathSciNet  Google Scholar 

  26. I. Vidav, Spectra of perturbed semigroups with applications to transport theory. J. Math. Anal. Appl.,30 (1970), 264–279.

    Article  MATH  MathSciNet  Google Scholar 

  27. A. T. Winfree, Wavelike activity in biological and chemical media. Mathematical Problems in Biology (ed. P. van dem Driessche), Lecture Notes in Biomath., Vol. 2, 1974.

  28. E. Yanagida, Stability of fast travelling pulse solutions of the FitzHugh-Nagumo equations. J. Math. Biol.,22 (1985), 81–104.

    Article  MATH  MathSciNet  Google Scholar 

Note added

  1. W. Jahnke, W. E. Skaggs and A. T. Winfree, Chemical vortex dynamics in the Belousov-Zhabotinsky reaction and in the two-variable oregonator model. J. Phys. Chem.,93 (1989), 740–749.

    Article  Google Scholar 

  2. J. J. Tyson, K. A. Alexander, V. S. Manoranjan and J. D. Murray: Spiral waves of cyclic AMP in a model of slime mold aggregation. Phys.,34D (1989), 193–207.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Tsujikawa, T., Nagai, T., Mimura, M. et al. Stability properties of traveling pulse solutions of the higher dimensional FitzHugh-Nagumo equations. Japan J. Appl. Math. 6, 341 (1989). https://doi.org/10.1007/BF03167885

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF03167885

Key words

Navigation