Skip to main content
Log in

A practical approach to the definition and measurement of “length”

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper proposes a new definition of “length” of an arbitrary given continuous curveC in the plane, which is not a single quantity but a functionL(ρ;C) of the precision ρ of measurement. ThisL(ρ;C) is monotone non-increasing in ρ, and coincides with the ordinary definitionL when ρ=0. A practical procedure for approximately calculating thisL(ρ;C) is also proposed. As illustrative examples, a theoretical calculation of the expected “length” of loci of the twodimensional Brownian motion, as well as numerical measurements and analyses of the “lengths” of coastal lines of the main islands of Japan and those of the truncated Weierstrass functions are given. ThisL(ρ;C) will give a solution to what is called the “paradox of length”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Steinhaus, W sprawie mierzenia długości linij krzywych plklaskich. Polski Przeglad Kartograficzny,37 (1932), 1–9.

    Google Scholar 

  2. H. Steinhaus, O długości krzywych empirycznych i jej pomiarze zwłaszcza w geografii. Sprawozdania Wrocławskiego Towarzystwa Naukowego,4 (1949), dodatek 5, 1–6.

    Google Scholar 

  3. H. Steinhaus, Length, shape and area. Colloq. Math.,3 (1954), 1–13.

    MATH  MathSciNet  Google Scholar 

  4. W. Blaschke, Vorlesungen über Integralgeometrie. Chelsea Publ. Co., New York, 1949.

    Google Scholar 

  5. L. F. Richardson, The problem of contiguity: An appendix to statistics of deadly quarrels. General Systems Yearbook,6 (1961), 139–187.

    Google Scholar 

  6. B. B. Mandelbrot, Fractals: Chance and Dimension. W. H. Freeman and Company, San Francisco, 1977.

    MATH  Google Scholar 

  7. B. B. Mandelbrot, The Fractal Geometry of Nature. W. H. Freeman and Company, San Francisco, 1982.

    MATH  Google Scholar 

  8. C. Carathéodory, Über das lineare Mass von Punktmengen — eine Verallgemeinerung des Längenbergriffs. Nachr. Ges. Wiss. Göttingen: Fachgruppe 1: Math, 1914, 404–421.

  9. A. P. Morse and I. J. Randolph, Gillespie measure. Duke Math. J.,6 (1940), 408–419.

    Article  MathSciNet  Google Scholar 

  10. H. Takayasu, Differential fractal dimension of random walk and its application to physical systems. J. Phys. Soc. Japan,51 (1982), 3057–3064.

    Article  MathSciNet  Google Scholar 

  11. S. Tsurumi and H. Takayasu, The fractal dimension of computer-simulated random walks. Phys. Lett.,113A (1986), 449–450.

    Google Scholar 

  12. T. Nakano, A “fractal” study of some rias coastlines in Japan. Annual Rep. Inst. Geosci., Univ. Tsukuba,9 (1983), 75–80.

    Google Scholar 

  13. L. A. Santalo, Integral Geometry and Geometric Probability. Addison-Wesley, Reading, 1976.

    MATH  Google Scholar 

  14. S. Sherman, A comparison of linear measures in the plane. Duke Math. J.,9 (1942), 1–9.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Saks, Theory of the Integral (translated by L. C. Young). Hafner Publ. Co., New York, 1937.

    Google Scholar 

  16. F. R. Gantmacher, The Theory of Matrices. Vol. II. Chelsea Publ. Co., New York, 1959.

    Google Scholar 

  17. Mitsubishi Research Institute, A Study on the Utilization of National Land Information and Management System Design: A Report on the Utilization and Analysis Methods, Part I, Analysis of Areal and Lineal Information, Chaps. 5 and 6 (in Japanese), 1979.

  18. K. Kishimoto and M. Iri, What is the real length of a coastal line? (in Japanese). Shizen,35 (1980), 36–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kishimoto, K., Iri, M. A practical approach to the definition and measurement of “length”. Japan J. Appl. Math. 6, 179–207 (1989). https://doi.org/10.1007/BF03167878

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167878

Key words

Navigation