Skip to main content
Log in

Traveling waves for some biological systems with density dependent diffusion

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we shall investigate the existence problem of traveling wave front solutions for some biological systems with density dependent diffusion by the classical and the geometric singular perturbation approaches. With the aid of traveling wave solutions, we discuss the effect of density dependent dispersal in the two competing species models and the prey-predator model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Aronson, Density dependent interaction-diffusion systems. Dynamics and Modeling of Reactive Systems, Academic Press, New York, 1980, 161–176.

    Google Scholar 

  2. D. G. Aronson, M. G. Crandall and L. A. Peletier, Stabilization of solutions of a degenerate nonlinear diffusion problem. Nonlinear Anal.,6 (1982), 1001–1022.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Atkinson, G. E. H. Reuter and C. J. Ridler-Rowe, Traveling wave solutions for some nonlinear diffusion equations. SIAM J. Math. Anal.,12 (1981), 880–892.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Bertsch, M. E. Gurtin, D. Hilhorst and L. A. Peletier, On interacting populations that disperse to avoid crowding: The effect of a sedentary colony. J. Math. Biol.,19 (1984), 1–12.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Bertsch, M. E. Gurtin, D. Hilhorst and L. A. Peletier, On interacting populations that disperse to avoid crowding: preservation of segregation. J. Math. Biol.,23 (1985), 1–13.

    MATH  MathSciNet  Google Scholar 

  6. S. Busenberg and M. Iannelli, A system of nonlinear degenerate parabolic equations. Harvey Mudd College Math. Dept. Technical Report, 1985.

  7. J. Carr, Applications of Centre Manifold Theory. Applied Math. Sciences, 35, Springer-Verlag, New York, 1981.

    MATH  Google Scholar 

  8. E. Coddington and N. Levinson, Theory of Ordinary Differential Equations. McGraw-Hill, New York, 1955.

    MATH  Google Scholar 

  9. C. Conley and R. Gardner, An application of the generalized Morse index to travelling wave solutions of a competitive reaction-diffusion model. Indiana Univ. Math. J.,33 (1984), 319–343.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Dal Passo and P. de Mottoni, Some existence, uniqueness and stability results for a class of semilinear degenerate elliptic systems. Boll. Un. Mat. Ital., Analisi Funzionale e Applicazioni, Serie VI,3 (1984), 203–231.

    MATH  Google Scholar 

  11. S. R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations. J. Math. Biol.,17 (1983), 11–32.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Engler, Relations between travelling wave solutions of quasilinear parabolic equations. Proc. Amer. Math. Soc.,93 (1985), 297–302.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. C. Fife, Boundary and interior transition layer phenomena for pairs of second-order differential equations. J. Math. Anal. Appl.,54 (1976), 497–521.

    Article  MATH  MathSciNet  Google Scholar 

  14. P. C. Fife, Singular perturbation and wave front techniques in reaction-diffusion problems. SIAM-AMS Proceedings,10 (1976), 23–50.

    MathSciNet  Google Scholar 

  15. H. Fujii and Y. Hosono, Neumann layer phenomena in nonlinear diffusion systems. Recent Topics in Nonlinear PDE, LNNAA 6, North-Holland, Amesterdam, 1983, 21–38.

    Google Scholar 

  16. R. Gardner, Existence and stability of travelling wave solutions of competition models: A degree theoretic approach. J. Differential Equations,44 (1982), 343–364.

    Article  MATH  MathSciNet  Google Scholar 

  17. W. S. C. Gurney and R. M. Nisbet, The regulation of inhomogeneous populations. J. Thoret. Biol.,52 (1975), 441–457.

    Article  Google Scholar 

  18. M. E. Gurtin and R. C. MacCamy, On the diffusion of biological populations. Math. Biosci.,33 (1979), 35–49.

    Article  MathSciNet  Google Scholar 

  19. M. E. Gurtin and A. C. Pipkin, A note on interacting populations that disperse to avoid crowding. Quart. Appl. Math.,42 (1984), 87–94.

    MATH  MathSciNet  Google Scholar 

  20. Y. Hosono, Traveling wave front solutions for some competitive systems with density dependent diffusion. Computational and Asymptotic Methods for Boundary and Interior Layers, Boole Press, Dublin, 1982, 285–290.

    Google Scholar 

  21. Y. Hosono, Traveling wave solutions for some density dependent diffusion equations. Japan J. Appl. Math.,3 (1986), 163–196.

    Article  MATH  MathSciNet  Google Scholar 

  22. Y. Hosono and M. Mimura, Singular perturbation approach to traveling waves in competing and diffusing species models. J. Math. Kyoto Univ.,22 (1982), 435–461.

    MATH  MathSciNet  Google Scholar 

  23. M. Ito, A remark on singular perturbation methods. Hiroshima Math. J.,14 (1985), 619–629.

    MATH  MathSciNet  Google Scholar 

  24. R. Kersner, Nonlinear heat conduction with absorption: space localization and extinction in finite time. SIAM J. Appl. Math.,43 (1983), 1274–1285.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics. Hiroshima Math. J.,11 (1981), 621–635.

    MATH  MathSciNet  Google Scholar 

  26. M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations. J. Math. Biol.,9 (1980), 49–64.

    Article  MATH  MathSciNet  Google Scholar 

  27. W. I. Newman, Some exact solutions to a non-linear diffusion problem in population genetics and combustion. J. Thoret. Biol.,85 (1980), 325–334.

    Article  Google Scholar 

  28. L. Nirenberg, Topics in Nonlinear Functional Analysis. Courant Inst. Math. Sci., New York Univ., 1974.

  29. A. Okubo, Diffusion and Ecological Problems: Mathematical Models. Biomathematics, 10, Springer-Verlag, New York, 1980.

    MATH  Google Scholar 

  30. M. A. Pozio and A. Tesei, Degenerate parabolic problems in population dynamics. Japan J. Appl. Math.,2 (1985), 351–380.

    Article  MathSciNet  Google Scholar 

  31. M. A. Pozio and A. Tesei, Nonlinear diffusion systems modelling biological interactions. Free Boundary Problems: Applications and Theory, Vol. IV, Research Notes in Mathematics 121, Pitman, London, 1985, 466–477.

    Google Scholar 

  32. N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species. J. Theoret. Biol.,79 (1979), 83–99.

    Article  MathSciNet  Google Scholar 

  33. M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion. Arch. Rational Mech. Anal.,73 (1980), 69–77.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Hosono, Y. Traveling waves for some biological systems with density dependent diffusion. Japan J. Appl. Math. 4, 297 (1987). https://doi.org/10.1007/BF03167778

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF03167778

Key words

Navigation