Skip to main content
Log in

Observability, controllability, and feedback stabilizability for evolution equations, III

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

Abstract

We study boundary feedback systems for parabolic equations. Along the abstract line of our previous work, we establish some stabilizability theorems together with a duality theorem concerning the two types of systems; the “boundary-output and interior-input” system and the “interior-output and boundary-input” system.

  1. §1.

    Introduction

  2. §2.

    Wellposedness of the Feedback Systems

  3. §3.

    Duality between the Boundary Output-Interior Input System and the Interior Output-Boundary Input System

  4. §4.

    Other Stabilizability Theorems

  5. §5.

    Concluding Remarks Appendix

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hermann and C. F. Martin, Applications of algebraic geometry to system theory—Part I. IEEE Trans. Auto. Control, AC-22 (1977), 19–25.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Itô, Diffusion Equations (in Japanese). Kinokuniya, Tokyo, 1979.

    Google Scholar 

  3. H. Kimura and H. Kaizuka, Applications of algebraic geometry to the system theory, in particular on the pole assignment problem (in Japanese). Kôkyûroku RIMS, Kyoto Univ.,485, 1983, 214–241.

    Google Scholar 

  4. L. Lasiecka and R. Triggiani, Stabilization of Neumann boundary feedback of parabolic equations, the case of trace in the feedback loop. Appl. Math. Optim.,10 (1983), 307–350.

    Article  MATH  MathSciNet  Google Scholar 

  5. L. Lasiecka and R. Triggiani, Stabilization and structural assignment of Dirichlet boundary feedback parabolic equations. SIAM J. Control Optim.,21 (1983), 766–803.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problem and Applications, vol. 1. Springer, Berlin-Heidelberg-New York, 1972.

    Google Scholar 

  7. S. Mizohata, The Theory of Partial Differential Equations. Cambridge U.P., London, 1973.

    MATH  Google Scholar 

  8. D. Mumford, Lectures on Curves on an Algebraic Surface. Princeton U.P., Princeton, 1966.

    MATH  Google Scholar 

  9. T. Nambu, Feedback stabilization for distributed parameter systems of parabolic type. J. Differential Equations,33 (1979), 167–188.

    Article  MATH  MathSciNet  Google Scholar 

  10. T. Nambu, ditto, II. Arch. Rational Mech. Anal.,79 (1982), 241–259.

    Article  MATH  MathSciNet  Google Scholar 

  11. T. Suzuki and M. Yamamoto, Observability, controllability and feedback stabilizability for evolution equations, I. Japan J. Appl. Math.,2 (1985), 211–228.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Suzuki and M. Yamamoto, ditto, II. Japan J. Appl. Math.,2 (1985), 309–327.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Triggiani, On Nambu’s boundary stabilizability problem for diffusion processes. J. Differential Equations,33 (1979), 189–200.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Triggiani, Boundary feedback stabilizability of parabolic equations. Appl. Math. Optim.,6 (1980), 201–220.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Suzuki, T., Yamamoto, M. Observability, controllability, and feedback stabilizability for evolution equations, III. Japan J. Appl. Math. 4, 185 (1987). https://doi.org/10.1007/BF03167773

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF03167773

Key words

Navigation