Skip to main content
Log in

Generalized coarea formula and fractal sets

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

For any domain ω of RN (N≥1), the classGC (ω) of functionals Λ:L 1 (ω) → [0, +∞] fulfilling the followinggeneralized coarea formula is introduced:

  1. (1)

    Λ(u) = ∫R Λ(H s (u))ds (≤ + ∞) ∀uL 1(Ω) whereH s (ξ)=0 if ξ <s andH s (ξ)=1 if ξ ≥s, for any ξ,s ∈ R. Examples are

  2. (2)

    \(V\left( u \right): = \int_\Omega {\left| {\nabla u} \right|: = \mathop {sup}\limits_{\eta \in C_c^1 \left( \Omega \right)^N ,\left| \eta \right| \leqslant 1} \int_\Omega {u div \eta dx} } \),

  3. (3)

    \(\Lambda _r \left( u \right): = \int {\int_{\Omega ^2 } {\left| {u\left( x \right) - u\left( y \right)} \right| \cdot \left| {x - y} \right|^{ - \left( {N + r} \right)} dxdy \forall r \in \left] {0,1} \right[} } \),

  4. (4)

    \(\tilde \Lambda _r \left( u \right): = \int {\int_{\Omega \times R^ + } {\left( {\mathop {ess sup u}\limits_{B_h \left( x \right) \cap \Omega } - \mathop { ess inf u}\limits_{B_h \left( x \right) \cap \Omega } } \right)h^{ - \left( {1 + r} \right)} dxdh \forall r \in \left] {0,1} \right[} } \).

The main properties of this class of functionals are here investigated.\gL r and\(\tilde \Lambda _r \) also allow us to construct two new definitions offractional dimension for set boundaries. Applications to models ofsurface tension effects in two-phase systems are then outlined. In particular,\gL r and\(\tilde \Lambda _r \) allow us to represent very irregular phase interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Chalmers, Principles of Solidification. Wiley, New York, 1964.

    Google Scholar 

  2. E. De Giorgi, F. Colombinie, L.C. Piccinini, Frontiere Orientate di Misura Minima e Questioni Collegate. Editrice Tecnico-Scientifica, Pisa, 1972.

    MATH  Google Scholar 

  3. K.J. Falconer, The Geometry of Fractal Sets. Cambridge University Press, Cambridge, 1985.

    MATH  Google Scholar 

  4. H. Federer, Geometric Measure Theory. Springer-Verlag, Berlin, 1969.

    MATH  Google Scholar 

  5. M.C. Flemings, Solidification Processing. McGraw-Hill, New York, 1974.

    Google Scholar 

  6. W.H. Fleming and R. Rishel, An integral formula for total gradient variation. Arch. Math.,11 (1960), 218–222.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Giusti, Minimal surfaces and functions of bounded variation. Birkhäuser, Boston, 1984.

    MATH  Google Scholar 

  8. M.E. Gurtin, On a theory of phase transitions with interfacial energy. Arch. Rational Mech. Anal.,87 (1985), 187–212.

    Article  MathSciNet  Google Scholar 

  9. B.B. Mandelbrot, Fractals. Form, Chance and Dimension. Freeman, San Francisco, 1977.

    MATH  Google Scholar 

  10. A. Visintin, Surface tension effects in phase transitions. Material Instabilities in Continuum Mechanics and Related Mathematical Problems (ed. J. Ball), Clarendon Press, Oxford, 1988, 505–537.

    Google Scholar 

  11. A. Visintin, Non-convex functionals related to multi-phase systems. S.I.A.M.T. Math. Anal.,21 (1990), 1281–1304.

    MATH  MathSciNet  Google Scholar 

  12. A. Visintin, Surface tension effects in two-phase systems. Proceedings of the Colloquium on Free Boundary Problems held in Irsee in June 1987 (forthcoming).

  13. A. Visintin, Pattern Evolution. Ann. Scuola Norm. Sup. Pisa,17 (1990), 197–225.

    MATH  MathSciNet  Google Scholar 

  14. A. Visintin, Generalized coarea formula. Recent Advances in Nonlinear Elliptic and Parabolic Problems (eds. P. Benilan, M. Chipot, L.C. Evans and M. Pierre), Longman, Harlow, 1989.

    Google Scholar 

  15. A. Visintin, Models of pattern formation. C.R. Acad. Sci. Paris,309 (1989), Sér. I, 429–434.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Visintin, A. Generalized coarea formula and fractal sets. Japan J. Indust. Appl. Math. 8, 175 (1991). https://doi.org/10.1007/BF03167679

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF03167679

Key words

Navigation