Skip to main content
Log in

Abstract

We reveal a close relationship between quadratic M-convex functions and tree metrics: A quadratic function defined on the integer lattice points is M-convex if and only if it has a tree representation. Furthermore, a discrete analogue of the Hessian matrix is defined for functions on the integer points. A function is M-convex if and only if the negative of the ‘discrete Hessian matrix’ is a tree metric matrix at each integer point. Thus, the M-convexity of a function can be characterized by that of its local quadratic approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H-J. Bandelt and A. W. M. Dress, A canonical decomposition theory for metrics on a finite set. Adv. in Math.,92 (1992), 47–105.

    Article  MATH  MathSciNet  Google Scholar 

  2. J-P. Barthélemy and A. Guénoche, Trees and Proximity Representations. John Wiley, New York, 1991.

    MATH  Google Scholar 

  3. O.P. Buneman, The recovery of trees from measures of dissimilarity. Mathematics in the Archaeological and Historical Sciences (eds. F. R. Hodson, D. G. Kendall and P. Tautu), Edinburgh University Press, 1971, 387–395.

  4. O.P. Buneman, A note on metric properties of trees. J. Combinatorial Theory, Series B,17 (1974), 48–50.

    Article  MATH  MathSciNet  Google Scholar 

  5. M.M. Deza and M. Laurent, Geometry of Cuts and Metrics. Springer-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  6. A.W.M. Dress, V. Moulton and W.F. Terhalle, T-theory: An overview. Eur. J. Combinatorics,17 (1996), 161–175.

    Article  MATH  MathSciNet  Google Scholar 

  7. A.W.M. Dress and W. Terhalle, The tree of life and other affine buildings. Documenta Mathematica, Extra Vol. III (1998), 565–574 (electronic).

    MathSciNet  Google Scholar 

  8. A.W.M. Dress and W. Wenzel, Valuated matroids. Adv. in Math.,93 (1992), 214–250.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Edmonds, Submodular functions, matroids and certain polyhedra. Combinatorial Structures and Their Applications (eds. R. Guy, H. Hanani, N. Sauer and J. Schönheim), Gordon and Breach, New York, 1970, 69–87.

    Google Scholar 

  10. J. Edmonds and R. Giles, A min-max relation for submodular functions on graphs. Ann. Discrete Math.,1 (1977), 185–204.

    Article  MathSciNet  Google Scholar 

  11. P. Favati and F. Tardella, Convexity in nonlinear interger programming. Ricerca Operativa,53 (1990), 3–44.

    Google Scholar 

  12. A. Frank, An algorithm for submodular functions on graphs. Ann. Discrete Math.,16 (1982), 97–120.

    MATH  Google Scholar 

  13. S. Fujishige, Theory of submodular programs: A Fenchel-type min-max theorem and subgradients of submodular functions. Math. Programming,29 (1984), 142–155.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Fujishige, Submodular Functions and Optimization. Annals of Discrete Mathematics47, North-Holland, Amsterdam, 1991.

    Google Scholar 

  15. L. Lovász, Submodular functions and convexity. Mathematical Programming—The State of the Art (eds. A. Bachern, M. Grötschel and B. Korte), Springer-Verlag, Berlin, 1983, 235–257.

    Google Scholar 

  16. S. Moriguchi and K. Murota, Discrete Hessian matrix for L-convex functions. METR 2004–30, Department of Mathematical Informatics, University of Tokyo, June 2004.

  17. K. Murota, Convexity and Steinitz’s exchange property. Adv. in Math.,124 (1996), 272–311.

    Article  MATH  MathSciNet  Google Scholar 

  18. K. Murota, Discrete Convex Analysis—An Introduction (in Japanese). Kyoritsu Publishing Co., Tokyo, 2001.

    Google Scholar 

  19. K. Murota, Discrete Convex Analysis. Society for Industrial and Applied Mathematics, Philadelphia, 2003.

  20. K. Murota and A. Shioura, Quadratic M-convex and L-convex functions. Adv. in Appl. Math.,33 (2004), 318–341.

    Article  MATH  MathSciNet  Google Scholar 

  21. R. Nabben and R.S. Varga, A linear algebra proof that the inverse of a strictly ultrametric matrix is a strictly diagonally dominant Stieltjes matrix. SIAM J. Matrix Anal. Appl.,15 (1994), 107–113

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Hira.

About this article

Cite this article

Hira, H., Murota, K. M-convex functions and tree metrics. Japan J. Indust. Appl. Math. 21, 391–403 (2004). https://doi.org/10.1007/BF03167590

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167590

Key words

Navigation