Homogenization of the Poisson equation in a porous medium with double periodicity

  • Patrizia Donato
  • Jeannine Saint Jean Paulin


We consider here the homogenization of the Poisson equation with Dirichlet's boundary conditions in a porous medium where the structure of the inclusions presents a double periodicity. We prove a convergence result identifying the limit function of the solution and we give corrector results and error estimates. We establish also specific correctors inside the zones with inclusions.

Key words

homogenization the Poisson equation porous medium 


  1. [1]
    G. Allaire, Continuity of the Darcy's law in the low-volume fraction limit. To appear in Ann. Scuola Norm. Sup. Pisa.Google Scholar
  2. [2]
    A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North Holland, Amsterdam, 1978.MATHGoogle Scholar
  3. [3]
    D. Cioranescu and F. Murat, Un terme étrange venu d'ailleurs. Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vol. II and III, (eds. H. Brezis and J.-L. Lions), Research Notes in Math., 60 and 70, Pitman, London, 1982, 93–138 and 154–178.Google Scholar
  4. [4]
    C. Conca and P. Donato, Non-homogeneous Neumann problems in domains with small holes. Modélisation Mathématique et Analyse Numérique,22(4) (1988), 561–608.MATHMathSciNetGoogle Scholar
  5. [5]
    A Damlamian and P. Donato, Homogenization with small perforations of increasingly complicated shapes. SIAM J. Math. Anal.,22 (1991), 639–652.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    P. Donato and J. Saint Jean Paulin, Homogenization of fluid flows in fissured porous medium (to appear).Google Scholar
  7. [7]
    H. Kacimi, Homogénéisation de problèmes de Dirichlet avec des petits trous. Thèse de 3ème cycle, Université Paris VI, 1987.Google Scholar
  8. [8]
    S. Kaizu, The Poisson equation with semilinear boundary conditions in domains with many tiny holes. J. Fac. Sci. Univ. Tokyo, Sect. IA., Math.,36 (1989), 67.MathSciNetGoogle Scholar
  9. [9]
    T. Levy, Filtration in a porous fissured rock: influence of the fissures connexity. European J. Mech., B/Fluids,9 (1990), 309–327.MATHMathSciNetGoogle Scholar
  10. [10]
    J.-L. Lions, Some methods in the mathematical analysis of systems and their control. Beijing, Gordon and Breach, New York, 1981.Google Scholar
  11. [11]
    E. Sanchez-Palencia, Non homogeneous Media and Vibration Theory. Lecture Notes in Physics,127, Springer-Verlag, 1980.Google Scholar
  12. [12]
    L. Tartar, Quelques remarques sur l'homogénéisation. Functional Analysis and Numerical Analysis, Proc. Japan-France Seminar 1976 (ed. Fujita), Japanese Society for the Promotion of Science, 1978, 468–482.Google Scholar

Copyright information

© JJIAM Publishing Committee 1993

Authors and Affiliations

  • Patrizia Donato
    • 1
  • Jeannine Saint Jean Paulin
    • 2
  1. 1.Istituto di Matematica, Facoltà di Scienze M. F. N.Università di SalernoBaronissi (Salerno)Italy
  2. 2.Departement de MathématiquesUniversité de MetzMetz cedex 01France

Personalised recommendations