Skip to main content
Log in

A recursive algorithm for finding the minimum covering sphere of a polytope and the minimum covering concentric spheres of several polytopes

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Given a point setP of the general dimension we present a recursive algorithm for finding the sphere with the smallest radius which contains all points ofP. For given point setsQ (1), …,Q (l) we extend the algorithm so that it findsl concentric spheres with the smallest sum of radii such that each sphere covers the corresponding point set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Avriel, Nonlinear Programming: Analysis and Methods. Prentice-Hall, Englewood, Cliffs, 1976.

    MATH  Google Scholar 

  2. R. Chandrasekaran, The weighted Euclidean 1-center problem. Oper. Res. Lett.,1 (1982), 111–112.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Chandrasekaran and M.J.A.P. Pacca, Weighted min-max location problems: Polynomially bounded algorithm. J. Oper. Res. Soc. India,17 (1980), 172–180.

    MATH  Google Scholar 

  4. Z. Drezner and G.O. Wesolowsky, Single facilityl p -distance minmax location. SIAM J. Algebraic Discrete Methods,1 (1980), 315–321.

    Article  MATH  MathSciNet  Google Scholar 

  5. M.E. Dyer, On a multidimensional search technique and its applications to the euclidean one-center problem. SIAM J. Comput.,15 (1986), 725–738.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Elzinga and D.W. Hearn, The minimum covering sphere problem. Management Sci.,19 (1972), 96–104.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Elzinga and D.W. Hearn, Geometrical solutions for some minimax location problems. Transportation Sci.,6 (1972), 379–394.

    Article  MathSciNet  Google Scholar 

  8. R.L. Francis, Some aspects of a minimax location problem. Oper. Res.,15 (1967), 1163–1169.

    Article  Google Scholar 

  9. N. Megiddo, Linear-time algorithms for linear programming inR 3 and related problems. SIAM J. Comput.,12 (1983), 759–776.

    Article  MATH  MathSciNet  Google Scholar 

  10. N. Megiddo, The weighted Euclidean 1-center problem. Math. Oper. Res.,8 (1983), 498–504.

    Article  MATH  MathSciNet  Google Scholar 

  11. R.C. Melville, An implementation study of two algorithms for the minimum spanning circle problem. Computational Geometry (ed. G.T. Toussaint), North-Holland, Amsterdam, 1985, 267–294.

    Google Scholar 

  12. K.P.K. Nair and R. Chandrasekaran, Optimal location of a single service center of certain types. Naval Res. Logist. Quart.,18 (1971), 503–510.

    Article  MathSciNet  Google Scholar 

  13. H. Rademacher and O. Toeplitz, The Enjoyment of Mathematics. Princeton University Press, Princeton, New Jersey, 1957.

    MATH  Google Scholar 

  14. K. Sekitani and Y. Yamamoto, A recursive algorithm for finding the minimum norm point in a polytope and a pair of closest points in two polytopes. Math. Programming, to appear.

  15. M.I. Shamos and D. Hoey, Closest-point problems. Proceedings of the 16th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los Angeles, 1975, 151–162.

    Google Scholar 

  16. S. Skyum, A simple algorithm for computing the smallest enclosing circle. Inform. Process. Lett.,37 (1991), 121–125.

    Article  MATH  MathSciNet  Google Scholar 

  17. J.J. Sylvester, A question in the geometry of situation. Quart. J. Pure Appl. Math.,1 (1857), 79.

    Google Scholar 

  18. P. Wolfe, Finding the nearest point in a polytope. Math. Programming,11 (1976), 128–149.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Sekitani, K., Yamamoto, Y. A recursive algorithm for finding the minimum covering sphere of a polytope and the minimum covering concentric spheres of several polytopes. Japan J. Indust. Appl. Math. 10, 255 (1993). https://doi.org/10.1007/BF03167575

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF03167575

Key words

Navigation