Skip to main content
Log in

Global attractivity and periodic solutions in delay-differential equations related to models in physiology and population biology

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

With appropriate assumptions, the following two general first-order nonlinear differential delay equations may be employed to describe some physiological control systems as well as some population growth processes:

$$x'(t) = f\left( {\int_{ - \tau }^{ - \sigma } x (t + s)d\mu (s)} \right) - g(x(t))$$

and

$$x'(t) = x(t)\left[ {f\left( {\int_{ - \tau }^{ - \sigma } x (t + s)d\mu (s)} \right) - g(x(t))} \right].$$

It is assumed thatg(x) is strictly increasing,g(0)=0, and each of these two equations has a unique positive steady state. Sufficient conditions are obtained for this steady state to be a global attractor (with respect to continuous positive initial functions) whenf(x) is monotone or has only one hump. We also establish the global existence of periodic solutions in these equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Bélair, Population models with state-dependent delays. Mathematical Population Dynamics, Proceedings of Second International Conference on Mathematical Population Dynamics (eds. O. Arino et al.), 1991, 165–176.

  2. J. Bélair and M.C. Mackey, A model for the regulation of mammalian platelet production. Ann. N.Y. Acad. Sci.,504 (1987), 280–282.

    Article  Google Scholar 

  3. J. Bélair and M.C. Mackey, Consumer memory and price fluctuations in commodity markets: an integrodifferential model. J. Dynamics Differential Equations,1 (1989), 299–325.

    Article  Google Scholar 

  4. L. Glass and M.C. Mackey, Pathological conditions resulting from instabilities in physiological control systems. Ann. N.Y. Acad. Sci.,316 (1979), 214–235.

    Article  Google Scholar 

  5. K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic Publisher, Dordrecht, 1992.

    MATH  Google Scholar 

  6. K. Gopalsamy, M.R.S. Kulenović, and G. Ladas, Oscillations and global attractivity in models of hematopoiesis. J. Dynamics Differential Equations,2 (1990), 117–132.

    Article  MATH  Google Scholar 

  7. K. Gopalsamy, M.R.S. Kulenović, and G. Ladas, Oscillations and global attractivity in respiratory dynamics. Dynamics Stability Systems,4 (1989), 131–139.

    MATH  Google Scholar 

  8. W.S. Gurney, S.P. Blythe and R.N. Nisbet, Nicholson's blowflies revisited. Nature,287 (1980), 17–21.

    Article  Google Scholar 

  9. J.R. Haddock and Y. Kuang, Asymptotic theory for a class of nonautonomous delay differential equations. J. Math. Anal. Appl., 166, 1992.

  10. J.R. Haddock and J. Terjéki, Liapunov-Razumikhin functions and an invariance principle for functional differential equations. J. Differential Equations,48 (1983), 95–122.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.K. Hale, Theory of Functional Differential Equations. Springer-Verlag, New York, 1977.

    MATH  Google Scholar 

  12. J.K. Hale and S.M.V. Lunel, The effect of rapid oscillations in the dynamics of delay equations. Georgia Inst. Tech. Technique Report: CDSN89-11.

  13. J.K. Hale and N. Sternberg, Onset of chaos in differential delay equations. J. Comput. Phys.,77 (1988), 221–239.

    Article  MATH  MathSciNet  Google Scholar 

  14. K.P. Hadeler and J. Tomiuk, Periodic solutions of difference-differential equations. Arch. Rational Mech. Anal.,65 (1977), 87–95.

    Article  MATH  MathSciNet  Google Scholar 

  15. U. an der Heiden and H.-O. Walther, Existence of chaos in control systems with delayed feedback. J. Differential Equations,47 (1983), 273–295.

    Article  MATH  MathSciNet  Google Scholar 

  16. Y. Kuang, Global stability for a class of nonlinear nonautonomous delay equations. Nonlinear Analysis,17 (1991), 627–634.

    Article  MATH  MathSciNet  Google Scholar 

  17. Y. Kuang, Qualitative analysis of one or two species neutral delay population models. SIAM J. Math. Anal.,23 (1992), 181–200.

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. Kuang, R.H. Martin and H.L. Smith, Global stability for infinite delay, dispersive Lotka-Volterra systems: weakly interacting populations in nearly identical patches. J. Dynamics Differential Equations,3 (1991), 339–360.

    Article  MATH  MathSciNet  Google Scholar 

  19. Y. Kuang and H.L. Smith, Global stability for infinite delay Lotka-Volterra type systems. J. Differential Equations, to appear.

  20. Y. Kuang and H.L. Smith, Periodic solutions of autonomous state-dependent threshold-delay equations. Nonlinear Analysis, to appear.

  21. Y. Kuang and H.L. Smith, Convergence in Lotka-Volterra type delay systems without instantaneous feedbacks. Proc. Roy. Soc. Edinburgh A, to appear.

  22. Y. Kuang, B.G. Zhang and T. Zhao, Qualitative analysis of a nonautonomous nonlinear delay-differential equation. Tôhoku Math. J.,43 (1991), 509–528.

    Article  MATH  MathSciNet  Google Scholar 

  23. M.C. Mackey, Periodic auto-immune hemolytic anemia: An induced dynamical disease. Bull. Math. Biol.,41 (1979), 829–834.

    MATH  MathSciNet  Google Scholar 

  24. M.C. Mackey, Some models in hemopoiesis: Predictions and problems. Biomathematics and Cell Kinetics (ed. M. Rotenberg), Elsevier/North-Holland, Amsterdam, 1981, 23–38.

    Google Scholar 

  25. M.C. Mackey and L. Glass, Oscillations and chaos in physiological control systems. Science,197 (1977), 287–289.

    Article  Google Scholar 

  26. M.C. Mackey and U. an der Heiden, The dynamics of recurrent inhibition. J. Math. Biol.,19 (1984), 211–225.

    Article  MATH  MathSciNet  Google Scholar 

  27. J. Mallet-Paret and R.D. Nussbaum, Global continuation and asymptotic behavior for periodic solutions of a differential-delay equation. Ann. Mat. Pura Appl.,145 (1986), 33–128.

    Article  MATH  MathSciNet  Google Scholar 

  28. J. Mallet-Paret and R. Nussbaum, A differential-delay equation arising in optics and physiology. SIAM J. Math. Anal.,20 (1989), 249–292.

    Article  MATH  MathSciNet  Google Scholar 

  29. R.K. Miller, On Volterra's population equation. J. SIAM Appl. Math.,14 (1966), 446–452.

    Article  MATH  Google Scholar 

  30. G. Seifert, On a delay-differential equation for single species population variations. Nonlinear Anal., TMA,11 (1987), 1051–1059.

    Article  MATH  MathSciNet  Google Scholar 

  31. H.-O. Walther, Homoclinic solution and chaos inx(t)=f(x(t−1)). Nonlinear Anal., TMA,5 (1981), 775–788.

    Article  MATH  MathSciNet  Google Scholar 

  32. E.M. Wright, A non-linear difference-differential equation. J. Reine Angew. Math.,494 (1955), 66–87.

    Google Scholar 

  33. J.A. Yorke, Asymptotic stability for one-dimensional differential-delay equations. J. Differential Equations,7 (1970), 189–202.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kuang, Y. Global attractivity and periodic solutions in delay-differential equations related to models in physiology and population biology. Japan J. Indust. Appl. Math. 9, 205 (1992). https://doi.org/10.1007/BF03167566

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF03167566

Key words

Navigation