Skip to main content
Log in

On some doubly nonlinear evolution equations in Banach spaces

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

The initial value problem is studied for the abstract evolution equationA(du/dt)+B(u)f, whereA andB are maximal monotone operators from a Banach spaceW to its dual spaceW *, withA bounded andB unbounded. Assuming suitable coerciveness conditions, the existence of a solution is established when at least one of the operators is the subdifferential of a proper convex lower semicontinuous function. The existence theorems are shown by introducing a suitable time discretization of the problem and then passing to the limit by monotonicity and compactness. Uniqueness is proved whenA orB is linear and symmetric and one of them is strictly monotone. Applications are indicated for classes of nonlinear partial differential equations and systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Arai, On the existence of the solution for ∂φ(u (t))+∂ψ(u(t))∋f(t). J. Fac. Sci. Univ. Tokyo Sec. IA Math.,26 (1979), 75–96.

    MATH  MathSciNet  Google Scholar 

  2. V. Barbu, Existence theorems for a class of two point boundary problems. J. Differential Equations,17 (1975), 236–257.

    Article  MathSciNet  Google Scholar 

  3. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing, Leyden, 1976.

    MATH  Google Scholar 

  4. V. Barbu, Existence for non-linear Volterra equations in Hilbert spaces. SIAM J. Math. Anal.,10 (1979), 552–569.

    Article  MATH  MathSciNet  Google Scholar 

  5. C. Bardos and H. Brézis, Sur une classe de problèmes d'évolution non linéaires. J. Differential Equations,6 (1969), 345–394.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Bénilan and K.S. Ha, Équations d'évolution du type (du/dt)+β∂φ(u)∋0 dansL (Ω). C. R. Acad. Sci. Paris Sér. A,281 (1975), 947–950.

    MATH  Google Scholar 

  7. H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam, 1973.

    MATH  Google Scholar 

  8. R.W. Carroll and R.E. Showalter, Singular and Degenerate Cauchy Problems. Mathematics in Science and Engineering. Vol. 27, Academic Press, New York, 1976.

    Google Scholar 

  9. P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations. Comm. Partial Differential Equations,15 (1990), 737–756.

    Article  MATH  MathSciNet  Google Scholar 

  10. E. Di Benedetto and R.E. Showalter, Implicit degenerate evolution equations and applications. SIAM J. Math. Anal.,12 (1981), 731–751.

    Article  MathSciNet  Google Scholar 

  11. G. Diaz and I. Diaz, Finite extinction time for a class of non-linear parabolic equations. Comm. Partial Differential Equations,4 (1979), 1213–1231.

    Article  MATH  Google Scholar 

  12. I. Diaz, On a fully nonlinear parabolic equation and the asymptotic behaviour of its solution. J. Math. Anal. Appl.,95 (1983), 144–168.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Duvaut and J.L. Lions, Sur des nouveaux problèmes d'inéquations variationnelles posés par la mécanique. Le cas d'évolution. C.R. Acad. Sci. Paris Sér. A-B,269 (1969), 570–572.

    MATH  MathSciNet  Google Scholar 

  14. G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics. Springer-Verlag, Berlin, 1976.

    MATH  Google Scholar 

  15. I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnels. Dunod Gauthier-Villars, Paris, 1974.

    MATH  Google Scholar 

  16. O. Grange and F. Mignot, Sur la résolution d'une équation et d'une inéquation paraboliques non linéaires. J. Funct. Anal.,11 (1972), 77–92.

    Article  MATH  MathSciNet  Google Scholar 

  17. K.S. Ha, Sur des semi-groupes non linéaires dans les espacesL (Ω). J. Math. Soc. Japan,31 (1979), 593–622.

    Article  MathSciNet  Google Scholar 

  18. N. Kenmochi and I. Pawlow, A class of nonlinear elliptic-parabolic equations with time-dependent constraints. Nonlinear Anal.,10 (1986), 1181–1202.

    Article  MATH  MathSciNet  Google Scholar 

  19. N. Kenmochi and I. Pawlow, Parabolic-elliptic free boundary problems with time-dependent obstacles. Japan J. Appl. Math.,5 (1988), 87–121.

    Article  MATH  MathSciNet  Google Scholar 

  20. N. Kenmochi and I. Pawlow, Asymptotic behavior of solutions to parabolic-elliptic variational inequalities. Nonlinear Anal.,13 (1989), 1191–1213.

    Article  MATH  MathSciNet  Google Scholar 

  21. J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod Gauthier-Villars, Paris, 1969.

    MATH  Google Scholar 

  22. B.D. Reddy, Existence of solutions to a quasistatic problem in elastoplasticity. To appear in Proceedings of 1st European Conference on Elliptic and Parabolic Problems, Pont-à-Mousson, June 1991.

  23. T. Senba, On some nonlinear evolution equation. Funkcial. Ekvac.,29 (1986), 243–257.

    MATH  MathSciNet  Google Scholar 

  24. R.E. Showalter, Nonlinear degenerate evolution equations and partial differential equations of mixed type. SIAM J. Math. Anal.,6 (1975), 25–42.

    Article  MATH  MathSciNet  Google Scholar 

  25. W.A. Strauss, Evolution equations non-linear in the time derivative. J. Appl. Math. Mech.,15 (1966), 49–82.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been supported by M.U.R.S.T. (fondi per la ricerca scientifica) and by theIstituto di Analisi Numerica of C.N.R., Pavia, Italy.

About this article

Cite this article

Colli, P. On some doubly nonlinear evolution equations in Banach spaces. Japan J. Indust. Appl. Math. 9, 181 (1992). https://doi.org/10.1007/BF03167565

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1007/BF03167565

Key words

Navigation