Skip to main content
Log in

Nonlinear and linear conservative finite difference schemes for regularized long wave equation

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We propose four conservative schemes for the regularized long-wave (RLW) equation. The RLW equation has three invariants: mass, momentum, and energy. Our schemes are designed by using the discrete variational derivative method to inherit appropriate conservation properties from the equation. Two of our schemes conserve mass and momentum, while the other two schemes conserve mass and energy. With one of our schemes, we prove the numerical solution stability, the existence of the solutions, and the convergence of the solutions. Through some numerical computation examples, we demonstrate the efficiency and robustness of our schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. London Ser. A,272 (1972), 47–78.

    Article  MATH  MathSciNet  Google Scholar 

  2. I. Dag and M.N. Ozer, Approximation of the RLW equation by the least square cubic B-spline finite element method. Appl. Math. Model.,25 (2001), 221–231.

    Article  MATH  Google Scholar 

  3. I. Dag, B. Saka and D. Irk, Application of cubic B-splines for numerical solution of the RLW equation. Appl. Math. Comput.,159 (2004), 373–389.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Durán and M.A. López-Marcos, Conservative numerical methods for solitary wave inter-actions. J. Phys. A: Math. Gen.,36 (2003), 7761–7770.

    Article  MATH  Google Scholar 

  5. J.C. Eilbeck and G.R. McGuire, Numerical study of the regularized long-wave equation, I: numerical methods. J. Comput. Phys.,19 (1975), 43–57.

    Article  MathSciNet  Google Scholar 

  6. J.C. Eilbeck and G.R. McGuire, Numerical study of the regularized long-wave equation, II: interaction of solitary waves. J. Comput. Phys.,23 (1977), 63–73.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Furihata, Finite difference schemes forδu/δt = (δ/x/gd)α δu/δG that inherit energy conservation or dissipation property. J. Comput. Phys.,156 (1999), 181–205.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Furihata, Finite difference schemes for nonlinear wave equation that inherit energy conservation property. J. Comput. Appl. Math.,134 (2001), 37–57.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Furihata and T. Matsuo, A stable, convergent, conservative and linear finite difference scheme for the Cahn-Hilliard equation. Japan J. Indust. Appl. Math.,20 (2003), 65–85.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Furihata and M. Mori, A stable finite difference scheme for the Cahn-Hilliard equation based on the Lyapunov functional. ZAMM Z. angew. Math. Mech.,76 (1996), 405–406.

    Article  MATH  Google Scholar 

  11. T. Hanada, N. Ishimura and M. Nakamura, Stable finite difference scheme for a model equation of phase separation. Appl. Math. Comput.,151 (2004), 95–104.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Ide, C. Hirota and M. Okada, Generalized energy integral forδu/δt = δG/δu and its finite difference schemes by means of discrete variational method and an application to Fujita problem. Adv. Math. Sci. Appl.,12 (2002), 755–778.

    MATH  MathSciNet  Google Scholar 

  13. F. John, Lectures on Advanced Numerical Analysis. Gordon and Breach, New York, 1967.

    Google Scholar 

  14. T. Matsuo and D. Furihata, Dissipative or conservative finite difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys.,171 (2001), 425–447.

    Article  MATH  MathSciNet  Google Scholar 

  15. T. Matsuo, M. Sugihara and M. Mori, A derivation of a finite difference scheme for the nonlinear Schrödinger equation by the discrete variational derivative (in Japanese). Trans. Japan Soc. Indust. Appl. Math.,8 (1998), 405–426.

    Google Scholar 

  16. P.J. Olver, Euler operators and conservation laws of the BBM equation. Math. Proc. Camb. Phil. Soc.,85 (1979), 143–160.

    Article  MATH  MathSciNet  Google Scholar 

  17. D.H. Peregrine, Calculations of the development of an undular bore. J. Fluid Mech.,25 (1966), 321–330.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Koide.

About this article

Cite this article

Koide, S., Furihata, D. Nonlinear and linear conservative finite difference schemes for regularized long wave equation. Japan J. Indust. Appl. Math. 26, 15 (2009). https://doi.org/10.1007/BF03167544

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1007/BF03167544

Key words

Navigation