Advertisement

Asymptotic analysis of the model for distribution of high-tax payers

  • Hiroshi YamamotoEmail author
  • Toshiya Ohtsuki
  • Akihiro Fujihara
  • Satoshi Tanimoto
  • Keizo Yamamoto
  • Sasuke Miyazima
Article

Abstract

The z-transform technique is used to investigate the model for distribution of high-tax payers, which is proposed by two of the authors (K. Y and S. M) and others [12]–[14]. Our analysis shows an asymptotic power-law of this model with the exponent −5/2 when a total “mass” has a certain critical value. Below the critical value, the system exhibits an ordinary critical behavior, and scaling relations hold. Above the threshold, numerical simulations show that a power-law distribution coexists with a huge “monopolized” member. It is argued that these behaviors are observed universally in conserved aggregation processes, by analizing an extended model.

Key words

power-law distribution high income model asymptotic analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G.D. Champernowne, A model of income distribution. Economic Journal,63 (1953), 318–351.CrossRefGoogle Scholar
  2. [2]
    P.L. Krapivsky and S. Render, Transitional aggregation kinetics in dry and damp environments. Phys. Rev. E,54 (1996), 3553–3561.CrossRefGoogle Scholar
  3. [3]
    M.H. Lee, On the validity of the coagulation equation and the nature of Runaway Growth. Icarus,143 (2000), 74–86.CrossRefGoogle Scholar
  4. [4]
    F. Leyvraz, Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Phys. Rep.,383 (2003), 95–212.CrossRefGoogle Scholar
  5. [5]
    S.N. Majumdar, S. Krishnamurthy, and M. Barma, Nonequilibrium phase transitions in models of aggregation, adsorption, and dissociation. Phys. Rev. Lett.,81 (1998), 3691–3694.CrossRefGoogle Scholar
  6. [6]
    S. Miyazima, Y. Lee, T. Nagamine and H. Miyajima, Power-law distribution of family names in Japanese societies. Physica A,278 (2000), 282–288.CrossRefGoogle Scholar
  7. [7]
    M.E.J. Newman, Power laws, Pareto distributions and Zipf’s law. Contemporary Physics,46 (2005), 323–351.CrossRefGoogle Scholar
  8. [8]
    V. Pareto, Le Cours d’Economie Politique. Macmillan, London, 1897.Google Scholar
  9. [9]
    J. Schmelzer, G. Röpke and R. Mahnke, Aggregation Phenomena in Complex Systems. Wiley-Vch, 1999.Google Scholar
  10. [10]
    A.C. Silva and V.M. Yakovenko, Temporal evolution of the ‘thermal’ and ‘superthermal’ income classes in the USA during 1983–2001. Europhysics Letters,69 (2005), 304–310.CrossRefGoogle Scholar
  11. [11]
    H. Takayasu, I. Nishikawa and H. Tasaki, Power-law mass distribution of aggregation systems with injection. Phys. Rev. A,37 (1988), 3110–3117.CrossRefMathSciNetGoogle Scholar
  12. [12]
    K. Yamamoto, S. Miyazima, R.K. Koshal, M. Koshal and Y. Yamada, A model for distribution of high-tax payers. Japan J. Indust. Appl. Math.,20 (2003), 147–154.zbMATHCrossRefGoogle Scholar
  13. [13]
    K. Yamamoto, S. Miyazima, R.K. Koshal, Y. Yamada, A model for distribution of high-tax payers. Physica A,314 (2002), 743–748.zbMATHCrossRefGoogle Scholar
  14. [14]
    K. Yamamoto, S. Miyazima, H. Yamamoto, T. Ohtsuki and A. Fujihara, The power-law exponent and the competition rule of the high income model. Practical Fruits of Econophysics, Springer, 2006, 349–353.Google Scholar
  15. [15]
    G.K. Zipf, Selected studies of the principle of relative frequency in language. Harvard University Press, Cambridge, MA, 1932.Google Scholar

Copyright information

© JJIAM Publishing Committee 2007

Authors and Affiliations

  • Hiroshi Yamamoto
    • 1
    Email author
  • Toshiya Ohtsuki
    • 2
  • Akihiro Fujihara
    • 3
  • Satoshi Tanimoto
    • 3
  • Keizo Yamamoto
    • 4
  • Sasuke Miyazima
    • 5
  1. 1.Division of Science, International College of Arts and ScienceYokohama City UniversityYokohamaJapan
  2. 2.Division of Science, International College of Arts and ScienceYokohama City UniversityYokohamaJapan
  3. 3.Graduate School of Integrated ScienceYokohama City UniversityYokohamaJapan
  4. 4.Faculty of EngineeringSetsunan UniversityOsakaJapan
  5. 5.Department of Natural ScienceChubu UniversityAichiJapan

Personalised recommendations