Advertisement

On the finite difference approximation for a parabolic blow-up problem

  • C. -H. Cho
  • S. Hamada
  • H. Okamoto
Article

Keywords

Finite Difference Dirichlet Boundary Condition Neumann Boundary Condition Finite Difference Scheme Finite Difference Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    L. Abia, J.C. López-Marcos and J. Martínez, Blow-up for semidiscretizations of reaction-diffusion equations. Appl. Numer. Math.,20 (1996), 145–156.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    L. Abia, J.C. López-Marcos and J. Martínez, On the blow-up time convergence of semi-discretizations of reaction-diffusion equations. Appl. Numer. Math.,26 (1998), 399–414.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    L.M. Abia, J.C. López-Marcos and J. Martínez, The Euler method in the numerical integration of reaction-diffusion problems with blow-up. Appl. Numer. Math.,38 (2001), 287–313.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    L.A. Caffarrelli and A. Friedman, Blow-up of solutions of nonlinear heat equations. J. Math. Anal. Appl.,129 (1988), 409–419.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    C.-H. Cho, On a finite difference scheme for the parabolic blow-up problems. Master’s thesis, Research Institute for Mathematical Sciecnes, Kyoto University, 2005.Google Scholar
  6. [6]
    Y.-G. Chen, Asymptotic behaviours of blowing-up solutions for finite difference analogue ofu t =u xx +u 1+α. J. Fac. Sci., Univ. Tokyo,33 (1986), 541–574.zbMATHGoogle Scholar
  7. [7]
    P.J. Davis and P. Rabinowitz, Methods of Numerical Integration. Academis Press, 1975.Google Scholar
  8. [8]
    A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations. Indiana Univ. Math. J.,34 (1985), 425–447.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    C. Hirota and K. Ozawa, A methof of estimating the blow-up time and blow-up rate of the solution of the system of ordinary sifferencial equations—An application to the blow-up problems of partial differencial equations—(in Japanese). Trans. Japan SIAM,14 (2004), 13–38.Google Scholar
  10. [10]
    S. Itô, On blow-up of positive solutions of semilinear parabolic equations. J. Fac. Sci. Univ. Tokyo, Sect. IA,37 (1990), 527–536.zbMATHGoogle Scholar
  11. [11]
    A.A. Lacey, Global blow-up of a nonlinear heat equation. Proc. R. Soc. Edin.,104 A (1986), 161–167.MathSciNetGoogle Scholar
  12. [12]
    T. Nakagawa, Blowing up of a finite difference solution tou t = uxx +u 2. Appl. Math. Optim.,2 (1976), 337–350.CrossRefMathSciNetGoogle Scholar
  13. [13]
    T. Nakagawa and T. Ushijima, Finite element analysis of the semi-linear heat equation of blow-up type. in Topics in Numer. Anal. III, ed. J.J.H. Miller, 1977, 275–291.Google Scholar
  14. [14]
    W. Ren and X.-P. Wang, An iterative grid redistribution method for singular problems in multiple dimensions. J. Comp. Phys.,159 (2000), 246–273.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    M. Tabata, A finite difference approach to the number of peaks of solutions for semilinear parabolic problems. J. Math. Soc. Japan,32 (1980), 171–191.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    T.K. Ushijima, On the approximation of blow-up time for solutions of nonlinear parabolic equations. Publ. RIMS,36 (2000), 613–640.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    F. Weissler, Single point blowup of semilinear initial value problems. J. Diff. Eqns.,55 (1984), 202–224.CrossRefMathSciNetGoogle Scholar

Copyright information

© JJIAM Publishing Committee 2007

Authors and Affiliations

  • C. -H. Cho
    • 1
  • S. Hamada
    • 1
  • H. Okamoto
    • 1
  1. 1.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan

Personalised recommendations