Skip to main content
Log in

Soliton switching in directional couplers

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

The mechanism of pulse switching is investigated analytically and numerically for a family of initial conditions with a solitonlike pulse in one channel and no signal on the other channel of the coupler. This investigation is performed directly in the coupled nonlinear Schroedinger equations that describe the directional coupler. This mechanism appears to be based on the simultaneous existence of the asymmetric and the symmetric soliton states: Switching then can take place for values of coupling constant and total energy for which the asymmetric soliton is stable and the symmetric soliton is unstable. The crucial features of the phase portrait in the infinite-dimensional space are described. In particular, near the switching threshold, a switching solution passes near the unstable symmetric soliton on its way to a new state with the energies in the channels reversed. On the basis of this mechanism a necessary condition for switching is found, which is confirmed numerically for some families of pulse shaped initial conditions. In the case of soliton switching with the energy as the switching parameter, this condition appears to give an accurate prediction of the actual switching threshold. The infinite-dimensional phase portrait has a simple structure, so that its features for a large part can be captured in a three-dimensional phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.A. Adams, Sobolev Spaces. Academic Press, New York, 1975.

    MATH  Google Scholar 

  2. V.I. Arnold, Mathematical Methods of Classical Mechanics. Springer, Berlin, 1984, Ap- pendix 5.

    Google Scholar 

  3. N. Akhmediev and A. Ankiewicz, First-order exact solutions of the nonlinear Schroedinger equation in the normal-dispersion regime. Phys. Rev.,A47 (1993), 3213–3221.

    Google Scholar 

  4. N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear pulses and beams. Chapman & Hall, London, 1997.

    Google Scholar 

  5. T.B. Benjamin, The stability of solitary waves. Proc. R. Soc. Lond.,A.328 (1972), 153–183.

    MathSciNet  Google Scholar 

  6. M.S. Berger, Nonlinearity and Functional Analysis. Academic Press, New York, 1977.

    MATH  Google Scholar 

  7. G.J. Brinkman and T.P. Valkering, Soliton decay in a Toda chain caused by dissipation. J. Appl. Math. Phys. (ZAMP),41 (1990), 61–78.

    Article  MATH  MathSciNet  Google Scholar 

  8. P.L. Chu, G.D. Peng and B.A. Malomed, Analytical solution to soliton switching in nonlinear twin-core fibers. Opt. Lett.,18 (1993), 328–330.

    Article  Google Scholar 

  9. P.T. De Boer, Soliton switching in directional couplers. Master Thesis, University of Twente, 1995.

  10. G.L.A. Derks and E.W.C. Van Groesen, Dissipation in Hamiltonian systems: decaying c- noidal waves. SIAM J. Math. Anal.,27 (1996), 1424–1447.

    Article  MATH  MathSciNet  Google Scholar 

  11. S.M. Jensen, The nonlinear coherent coupler. IEEE J. Quant. Electr.,18 (1982), 1580–1583.

    Article  Google Scholar 

  12. T. Kato, Perturbation Theory for Linear Operators. Springer, New York, 1966.

    MATH  Google Scholar 

  13. Y.S. Kivshar, Switching dynamics of solitons in fiber directional couplers. Opt. Lett.,18 (1993), 7–9.

    Article  Google Scholar 

  14. B.A. Malomed, I.M. Skinner, P.L. Chu and G.D. Peng, Symmetric and asymmetric solitons in twin-core nonlinear optical fibers. Phys. Rev.,E53 (1996), 4084–4091.

    Google Scholar 

  15. J. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetries. Rep. Math. Phys.,5 (1970), 121–130.

    Article  MathSciNet  Google Scholar 

  16. J. Marsden, Lectures on Mechanics. Cambridge University Press, Cambridge, 1992.

    MATH  Google Scholar 

  17. P.M. Morse and H. Feshbach, Methods of Theoretical Physics. McGraw-Hill, New York, 1953.

    MATH  Google Scholar 

  18. C. Paré and M. Florjanczyk, Approximate model of soliton dynamics in all-optical couplers. Phys. Rev.,A41 (1990), 6287–6295.

    Google Scholar 

  19. M. Romagnoli, S. Trillo and S. Wabnitz, Soliton switching in nonlinear couplers. Opt. Quant. Electron.,24 (1992), 1237–1267.

    Article  Google Scholar 

  20. G.I. Stegeman and E.M. Wright, All-optical waveguide switching. Opt. Quant. Electron.,22 (1990), 95–122.

    Article  Google Scholar 

  21. J.M. Soto-Crespo and N. Akhmediev, Stability of soliton states in a nonlinear fiber coupler. Phys. Rev.,E48 (1993), 4710–4715.

    Google Scholar 

  22. E. Van Groesen and E.M. De Jager, Mathematical Structures in Continuous Dynamical Systems. North-Holland, Amsterdam, 1994.

    MATH  Google Scholar 

  23. E. Van Groesen, F.P.H. Van Beckum and T.P. Valkering, Decay of travelling waves in dissipative Poisson systems. J. Appl. Math. Phys. (ZAMP),41 (1990), 501–523.

    Article  MATH  Google Scholar 

  24. J. Wilson and G.I. Stegeman, All-optical switching of solitons in an active nonlinear direc- tional coupler. Opt. Quant. Electron.,24 (1992), 1325–1336.

    Article  Google Scholar 

  25. E.M. Wright, G.I. Stegeman and S. Wabnitz, Solitary-wave decay and symmetry-breaking instabilities in two-mode fibers. Phys. Rev.,A40 (1989), 4455–4466.

    Google Scholar 

  26. I.M. Usunov, R. Muschall, M. Gölles, Yuri S. Kivshar, B.A. Malomed and F. Lederer, Pulse switching in nonlinear fiber directional couplers. Phys. Rev.,E51 (1995), 2527–2537.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Valkering, T.P., De Boer, P.T. & Hoekstra, H.J.W.M. Soliton switching in directional couplers. Japan J. Indust. Appl. Math. 16, 65 (1999). https://doi.org/10.1007/BF03167525

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1007/BF03167525

Key words

Navigation