Skip to main content
Log in

Most stable patterns among three-dimensional Turing patterns

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

It is known that Turing systems in two dimensions produce spotted, striped, and labyrinthine patterns. In three dimensions, a greater variety of patterns is possible. By numerical simulation of the FitzHugh-Nagumo type of reaction-diffusion system, we have obtained not only lamellar, hexagonal and spherical structures (BCC and FCC) but also gyroid, Fddd, and perforated lamellar structures. The domains of these three structures constitute interconnected regular networks, a characteristic occurring in three dimensions. Moreover, we derive the Lyapunov functional by reducing the system, and we evaluate this functional by introducing the asymptotic solutions of each structure by the mode-expansion method and direct simulation of the time evolution equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Meinhardt, Models of Biological Pattern Formation. Academic Press, London, 1982.

    Google Scholar 

  2. J.D. Murray, Mathematical Biology. Springer-Verlag, New York, 2003.

    MATH  Google Scholar 

  3. A.M. Turing, The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B,237 (1952), 37–72.

    Article  Google Scholar 

  4. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems. Wiley, New York, 1977.

    MATH  Google Scholar 

  5. P. De Kepper, E. Dulos, J. Boissonade, A. De Wit, G. Dewel and P. Borckmans, Reactiondiffusion patterns in confined chemical systems. J. Stat. Physic,101 (2000), 495–508.

    Article  MATH  Google Scholar 

  6. V. Castets, E. Dulos, J. Boissonade and P. De Kepper, Experimental-evidence of a sustained standing Turing-type nonequilibrium chemical-pattern. Phys. Rev. Lett.,64 (1990), 2953–2956.

    Article  Google Scholar 

  7. H. Haken, Synergetics, An Introduction. Springer-Verlag, Berlin, 1977.

    MATH  Google Scholar 

  8. A. De Wit, G. Dewel, P. Borckmans and D. Walgraef, 3-dimensional dissipative structures in reaction diffusion-systems. Physica D.,61 (1992), 289–296.

    Article  MATH  Google Scholar 

  9. A. De Wit, P. Borckmans and G. Dewel, Twist grain boundaries in three-dimensional lamellar Turing structures. Proc. Nat. Acad. Sci.,94 (1997), 12765–12768.

    Article  Google Scholar 

  10. T. Leppanen, M. Karttunen, R. Kaski, R. A. Barrio and L. Zhang, A new dimension to Turing patterns. Physica D.,168 (2002), 35–44.

    Article  MathSciNet  Google Scholar 

  11. H. Shoji, K. Yamada and T. Ohta, Interconnected Turing patterns in three-dimensions. Phys. Rev. E,72 (2005), 65202(R).

    Article  Google Scholar 

  12. H. Shoji, K. Yamada, D. Ueyama and T. Ohta, in review.

  13. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J.,9 (1961), 445–466.

    Article  Google Scholar 

  14. J. Nagumo, R. Arimoto and S. Yoshizawa, Active pulse transmission line simulating nerve axon. Proc. IRE,50 (1962), 2061-?.

    Article  Google Scholar 

  15. J. Rinzel and J.B. Keller, Travelling-wave solutions of a nerve-conduction equation. Biophys.,13 (1973), 1313–1337.

    Article  Google Scholar 

  16. J.J. Tyson and J.P. Keener, Singular perturbation-theory of traveling waves in excitable media. Physica D.,32 (1988), 327–361.

    Article  MATH  MathSciNet  Google Scholar 

  17. I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems. 2. J. Chem. Phys.,48 (1968), 1695–1700.

    Article  Google Scholar 

  18. P. Gray and S.K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor-isolas and other forms of multistability. Chem. Eng. Sci.,38 (1983), 29–43.

    Article  Google Scholar 

  19. A. Shinozaki and Y. Oono, Spinodal decomposition in 3-space. Phys. Rev. E,48 (1993), 2622–2654.

    Article  Google Scholar 

  20. A. Aksimetiev, M. Fialkovski and R. Holyst, Morphology of surfaces in mesoscopic polymers, surfactants, electrons, or reaction-diffusion systems: Methods, simulations, and measurements. Adv. Chem. Phys.,121 (2002), 141–239.

    Article  Google Scholar 

  21. K. Yamada, M. Nonomura and T. Ohta, Kinetics of morphological transitions in microphaseseparated diblock copolymers. Macromolecules,37 (2004), 5762–5777.

    Article  Google Scholar 

  22. T. Ohta, Decay of metastable rest state in excitable reaction-diffusion system. Prog. Theo. Phys. Suppl.,99 (1989), 425–441.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroto Shoji.

About this article

Cite this article

Shoji, H., Yamada, K. Most stable patterns among three-dimensional Turing patterns. Japan J. Indust. Appl. Math. 24, 67–77 (2007). https://doi.org/10.1007/BF03167508

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167508

Key words

Navigation