Permanence of a general periodic single-species system with periodic impulsive perturbations

  • Xianning Liu
  • Yasuhiro Takeuchi


Sufficient conditions for permanence of a general periodic single-species system with periodic impulsive perturbations are obtained via comparison theory of impulsive differential equations. An application is given to the periodic impulsive logistic system.

Key words

impulses single-species permanence periodic perturbation 


  1. [1]
    D.D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications. Longman, England, 1993.MATHGoogle Scholar
  2. [2]
    E. Funasaki and M. Kot, Invasion and chaos in a periodically pulsed mass-action chemostat. Theor. Popul. Biol.,44 (1993), 203–224.MATHCrossRefGoogle Scholar
  3. [3]
    S. Gao and L. Chen, The effect of seasonal harvesting on a single-species discrete population model with stage structure and birth pulses. Chaos, Solitons & Fractals,24 (2005), 1013–1023.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    A. Lakmeche, O. Arino, Birfurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dynam. Contin. Discrete Impuls.,7 (2000), 265–287.MATHMathSciNetGoogle Scholar
  5. [5]
    V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations. World Scientific, Singapore, 1989.MATHGoogle Scholar
  6. [6]
    W. Li and H. Huo, Global attractivity of positive periodic solutions for an impulsive delay periodic model of respiratory dynamics, J. Comput. Appl. Math.,174 (2005), 227–238.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    W. Li and H. Huo, Existence and global attractivity of positive periodic solutions of functional differential equations with impulses. Nonlinear Analysis,59 (2004), 857–877.MATHMathSciNetGoogle Scholar
  8. [8]
    B. Liu, Y. Zhang and L. Chen, The dynamical behaviors of a Lotka-Volterra predator-prey model concerning integrated pest management. Nonlinear Anal. Real World Appl.,6 (2005), 227–243.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    X. Liu and L. Chen, Global dynamics of the periodic logistic system with periodic impulsive perturbations. J. Math. Anal. Appl.,289 (2004), 279–291.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    X. Liu and L. Chen, Global attractivity of positive periodic solutions for nonlinear impulsive systems. Nonlinear Analysis,65 (2006), 1843–1857.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    M.G. Roberts and R.R. Kao, The dynamics of an infectious disease in a population with birth pulses. Math. Biosci.,149 (1998), 23–36.MATHCrossRefGoogle Scholar
  12. [12]
    B. Shulgin, L. Stone and Z. Agur, Pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol.,60 (1998), 1123–1148.MATHCrossRefGoogle Scholar
  13. [13]
    S. Tang and L. Chen, Density-dependent birth rate, birth pulses and their population dynamic consequences. J. Math. Biol.,44 (2002), 185–199.CrossRefMathSciNetGoogle Scholar
  14. [14]
    S. Tang and L. Chen, Global attractivity in a “food-limited” population model with impulsive effects. J. Math. Anal. Appl.,292 (2004), 211–221.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    J. Yan, A. Zhao and J. J. Nieto, Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka—Volterra systems. Math. Comput. Model.,40 (2004), 509–518.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    B. Zhang and Y. Liu, Global attractivity for certain impulsive delay differential equations. Nonlinear Analysis,52 (2003), 725–736.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    W. Zhu, D. Xu and Z. Yang, Global exponential stability of impulsive delay difference equation. Appl. Math. Comput.,181 (2006), 65–72.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© JJIAM Publishing Committee 2007

Authors and Affiliations

  1. 1.Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education) School of Mathematics and StatisticsSouthwest UniversityChongqingP.R. China
  2. 2.Department of Systems EngineeringShizuoka UniversityHamamatsuJapan

Personalised recommendations