Skip to main content
Log in

Generalized energy integrals and energy conserving numerical schemes for partial differential equations

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Various partial differential equations are derived from generalized energy integrals by a variational argument. Then their discrete versions serve us as the important basis to construct convenient energy preserving difference schemes. Numerical simulation is also performed for a nonlinear wave equation obtained as a simple-minded continuum limit of the Toda lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.F. Ames, Numerical Methods for Partial Differential Equations (3rd ed.). Academic Press, Boston, MA, 1992.

    MATH  Google Scholar 

  2. Z. Fei and L. Vázquez, Two energy conserving numerical schemes for the sine-Gordon equation. Appl. Math. Comput.,45 (1991), 17–30.

    Article  MATH  MathSciNet  Google Scholar 

  3. W.E. Ferguson, H. Flaschka and D.W. McLaughlin, Nonlinear normal modes for the Toda chain. J. Comput. Phys.,45, No. 2 (1982), 157–209.

    Article  MATH  MathSciNet  Google Scholar 

  4. K.O. Friedrichs, Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math.,7, No. 1 (1954), 345–392.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Furihata and M. Mori, General derivation of finite difference schemes by means of a discrete variation (in Japanese). Trans. Japan Soc. Indust. Appl. Math.,8 (1998), 317–340.

    Google Scholar 

  6. D. Furihata, A stable and conservative finite difference scheme for the Cahn-Hilliard equation. Numer. Math.,87 (2001), 675–699.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Furihata, Finite difference schemes for nonlinear wave equation that inherit energy conservation property. To appear in J. Comput. Appl. Math.

  8. I.M. Gelfand and S.V. Fomin, Calculus of Variations. Prentice-Hall, Englewood Cliffs, N. J., 1963.

    Google Scholar 

  9. J. Hadamard, Sur l’intégrale résiduelle. Bull. Soc. Math. France,28 (1900), 69–90.

    MATH  MathSciNet  Google Scholar 

  10. E. Hairer, S.P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I. Springer, 1993.

  11. C. Hirota, M. Okada and K. Ozawa, On soliton solutions in a branched lattice of nonlinear LC circuit (in Japanese). Abstract for Annual Meeting of Japan Soc. Indust. Appl. Math., 2000, 240–241.

  12. T. Ide, N. Fukuoka and M. Okada, On a nonlinear wave equation and its numerical experiments (in Japanese). Abstract for Annual Meeting of Japan Soc. Indust. Appl. Math., 2001, and Preprint.

  13. P.D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation. Comm. Pure Appl. Math.,7 (1954), 159–193.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Li and L. Vu-Quoc, Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal.,32, No. 6 (1995), 1839–1875.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Maeda, A study on Lie algebra spanned by quadratic first integrals admitted by discrete linear Hamiltonian system. Int. J. Appl. Math.,2, No. 5 (2000), 635–644.

    MATH  MathSciNet  Google Scholar 

  16. T. Matsuo, M. Sugihara and M. Mori, A derivation of a finite difference scheme for the nonlinear Schrödinger equation by the discrete variational method (in Japanese). Trans. Japan Soc. Indust. Appl. Math.,8 (1998), 405–426.

    Google Scholar 

  17. J.P. Olver, Application of Lie Group to Differential Equations. GTM 107, Springer-Verlag, NewYork, 1986.

    Google Scholar 

  18. K. Ozawa, M. Okada and H. Kokuta, Numerical study on wave propagation in a Branched lattice of LC circuit. Interdisciplinary Information Sciences (GSIS, Tohoku University),1, No. 2 (1995), 121–132.

    Article  MATH  Google Scholar 

  19. R.D. Richtmyer and K.W. Morton, Difference Methods for Initial Value Problems (2nd ed.). Wiley Interscience, NewYork, 1967.

    MATH  Google Scholar 

  20. W. Strauss and L. Vázquez, Numerical solution of nonlinear Klein-Gordon equation. J. Comput. Phys.,28 (1978), 271–278.

    Article  MATH  MathSciNet  Google Scholar 

  21. W. Strauss, Nonlinear Wave Equations. CBMS Regional Conference Series in Mathematics, No. 73, Providence, 1989.

  22. M. Toda, Vibration of a chain with nonlinear interaction. J. Phys. Soc. Japan,22 (1967), 431–436.

    Article  Google Scholar 

  23. M. Toda, Nonlinear Waves and Solitons. Kluwer Academic Publishers, 1989.

  24. H. Weber, Die partiellen Differentialgleichungen der mathematischen Physik nach Riemann’s Vorlesungen in 4ter Auflage neu bearbeitet. Braunschweig, Friedrich Vieweg,1, 1900.

  25. G.B. Whitham, Linear and Nonlinear Waves. John Wiley, NewYork, 1974.

    MATH  Google Scholar 

  26. H. Yoshida, Recent progress in the theory and application of symplectic integrators. Celest. Mech. Dyn. Astron.,56 (1993), 27–43.

    Article  MATH  Google Scholar 

  27. N.J. Zabusky and M.D. Kruskal, Interactions of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett.,15 (1965), 240–243.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by Grant-in-Aid for Scientific Research (No. 12640100) Ministry of Education, Culture, Sports, Science and Technology, Japan.

About this article

Cite this article

Hirota, C., Ide, T., Fukuoka, N. et al. Generalized energy integrals and energy conserving numerical schemes for partial differential equations. Japan J. Indust. Appl. Math. 21, 163 (2004). https://doi.org/10.1007/BF03167470

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1007/BF03167470

Key words

Navigation