Skip to main content
Log in

Predator-prey dynamics with delay when prey dispersing inn-patch environment

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

A model with time delay is considered for a predator-prey system. Here, a single species disperses between n patches of a heterogeneous environment with barriers between patches while a predator does not involve a barrier between patches. It is shown that the system is permanent under some appropriate conditions, and sufficient conditions are established for the global asymptotic stability of the positive equilibrium of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Beretta and Y. Takeuchi, Global stability of single-species diffusion models with continuous time delays. Bull. Math. Biol.,49 (1987), 431–448.

    MATH  MathSciNet  Google Scholar 

  2. W.C. Chewning, Migratory effects in predation prey systems. Math. Biosci.,23 (1975), 253–262.

    Article  MATH  MathSciNet  Google Scholar 

  3. H.I. Preedman, Single species migration in two habitats: persistence and extinction. Math. Model.,8 (1987), 778–780.

    Article  Google Scholar 

  4. H.I. Freedman, B, Rai and P. Waltman, Mathematical models of population interactions with dispersal II: differential survival in a change of habitat. J. Math. Anal. Appl.,115 (1986), 140–154.

    Article  MATH  MathSciNet  Google Scholar 

  5. H.I. Freedman and Y. Takeuchi, Global stability and predator dynamics in a model of prey dispersal in a patchy environment. Nonlinear Anal.,13 (1989), 993–1003.

    Article  MATH  MathSciNet  Google Scholar 

  6. H.I. Freedman and Y. Takeuchi, Predator survival versus extinction as a function of dispersa; in a predator-prey model with patchy environment. Appl. Anal.,31 (1989), 247–266.

    Article  MATH  MathSciNet  Google Scholar 

  7. H.I. Freedman and P. Waltman, Mathematical models of population interaction with dispersal I: stability of two habits with and without a predator. SIAM J. Appl. Math.,32 (1977), 631–648.

    Article  MATH  MathSciNet  Google Scholar 

  8. J.K. Hale and P. Waltman, Persistence in infinite-dimensional systems. SIAM J. Math. Anal.,20 (1989), 388–395.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Hastings, Dynamics of a single species in a spatially varying environment: the stabilizing role of high dispersal rates. J. Math. Biol.,16 (1982), 49–55.

    MATH  MathSciNet  Google Scholar 

  10. R.D. Holt, Population dynamics in two patch environments: some anomalous consequences of optional habitat selection. Theor. Pop. Biol.,28 (1985), 181–208.

    Article  MATH  MathSciNet  Google Scholar 

  11. C.B. Huffaker and C.E. Kennett, Experimental studies on predation: predation and cyclamen-mite population on strawberries in California. Hilgardia,26 (1956), 191–222.

    Google Scholar 

  12. N.R. LeBlond, Porcupine Caribou Herd. Canadian Arctic Resources Com., Ottawa, 1979.

    Google Scholar 

  13. V. Lakshmikantham and S. Leela, Differential and Integral Inequalities (Vols. I and II). Academic Press, New York, 1969.

    MATH  Google Scholar 

  14. S.A. Levin, Spatial patterning and the structure of ecological communities. Some Mathematical Questions in Biology VII, A. M. S. Providence, R. I., 1976.

    Google Scholar 

  15. S.A. Levin, Dispersion and population interactions. Am. Nat.,108 (1984), 201–228.

    Google Scholar 

  16. Y. Kuang, Delay Differential Equations with Applications in Population Dynamics. Academic Press, New York, 1993.

    MATH  Google Scholar 

  17. Y. Kuang and Y. Takeuchi, Predator-prey dynamics in models of prey dispersal in two patch environments. Math. Biosci.,120 (1994), 77–98.

    Article  MATH  MathSciNet  Google Scholar 

  18. L.A. Segal and S.A. Levin, Application of nonlinear stability theory to the study of the effects of diffusion on predator-prey interactions. Topics in Statistical Mechanics and Biophysics: A Memorial to Julius L. Jackson (ed. W. D. Lakin), AIP Conf. Proc, No. 27, Amer. Inst. Phys., New York, 1976, 123–152.

    Google Scholar 

  19. J.F. Selgrade, Asymptotic behavior of solutions to a single loop positive feedback system. J. Differential Equations,38 (1980), 80–103.

    Article  MATH  MathSciNet  Google Scholar 

  20. J.F. Selgrade, On the existence and uniqueness of connecting orbits. Nonlinear Anal.,7 (1983), 1123–1125.

    Article  MATH  MathSciNet  Google Scholar 

  21. Y. Takeuchi, Global stability in generalized Lotka-Volterra diffusion systems. J. Math. Anal. Appl.,116 (1986), 209–221.

    Article  MATH  MathSciNet  Google Scholar 

  22. Y. Takeuchi, Diffusion effect on stability of Lotka-Volterra models. Bull. Math. Biol.,48 (1986), 585–601.

    MATH  MathSciNet  Google Scholar 

  23. R.R. Vance, The effect of dispersal on population stability in one-species, discrete-space population growth models. Am. Nat.,123 (1984), 230–254.

    Article  Google Scholar 

  24. W.D. Wang and Z.E. Ma, Asymptotic behavior of a predator-prey system with diffusion and delays. J. Math. Anal. Appl.,206 (1997), 191–204.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Qiu, L., Mitsui, T. Predator-prey dynamics with delay when prey dispersing inn-patch environment. Japan J. Indust. Appl. Math. 20, 37 (2003). https://doi.org/10.1007/BF03167461

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1007/BF03167461

Key words

Navigation