Finite element approximations forΔu −qu = f on a Riemann surface

  • Heihachiro Hara
  • Hisao Mizumoto


We concern ourselves with the finite element approximations of the partial differential equation: ∂2 u/∂x 2 + ∂2 u/∂y 2 -qu =f (z =x +iy) on a compact bordered Riemann surface\(\bar \Omega \). It is characteristic of our method that we adopt ordinary triangular meshes and linear elements on a subregion of every fixed parameter disk, our triangulation embeds\(\bar \Omega \) exactly even in the case of curvilinear boundary arcs, and our approximating functions ofu express singular property exactly near inner and corner singularities. We obtain the error estimates for finite element approximations and also apply our results to numerical calculation of some boundary value problems.

Key words

finite element approximations elliptic partial differential equations Riemann surface 


  1. [1]
    L.V. Ahlfors and L. Sario, Riemann Surfaces. Princeton University Press, Princeton, 1960.MATHGoogle Scholar
  2. [2]
    I. Babuška, The rate of convergence for the finite element method. SIAM J. Numer. Anal.,8 (1971), 304–315.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    I. Babuška and R.B. Kellogg, Nonuniform error estimates for the finite element method. SIAM J. Numer. Anal.,12 (1975), 868–875.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    I. Babuška, R.B. Kellogg and J. Pitkäranta, Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math.,33 (1979), 447–471.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    I. Babuška, B.A. Szabo and I.N. Katz, The p-version of the finite element method. SIAM J. Numer. Anal.,18 (1981), 515–545.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    R.E. Bank and T. Dupont, An optimal order process for solving finite element equations. Math. Comp.,36 (1981), 35–51.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    R.E. Bank, T.F. Dupont and H. Yserentant, The hierarchical basis multigrid method. Numer. Math.,52 (1988), 427–458.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    H. Blum and R. Rannacher, Extrapolation techniques for reducing the pollution effect of reentrant corners in the finite element method. Numer. Math.,52 (1988), 539–564.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    J.H. Bramble and M. Zlámal, Triangular elements in the finite element method. Math. Comp.,24 (1970), 809–820.CrossRefMathSciNetGoogle Scholar
  10. [10]
    D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order (2nd Edition). Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.MATHGoogle Scholar
  11. [11]
    P. Grisvard, Singularities in Boundary Value Problems. Masson, Paris, 1992.MATHGoogle Scholar
  12. [12]
    B.Q. Guo, The h-p version of the finite element method for elliptic equations of order 2m. Numer. Math.,53 (1988), 199–224.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    H. Hara and H. Mizumoto, Determination of the modulus of quadrilaterals by finite element methods. J. Math. Soc. Japan,42 (1990), 295–326.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    H. Mizumoto, A finite-difference method on a Riemann surface. Hiroshima, Math. J.,3 (1973), 277–332.MATHMathSciNetGoogle Scholar
  15. [15]
    H. Mizumoto and H. Hara, Finite element approximations of harmonic differentials on a Riemann surface. Hiroshima Math. J.,18 (1988), 617–654.MATHMathSciNetGoogle Scholar
  16. [16]
    H. Mizumoto and H. Hara, Maximum principles for finite element solutions on a Riemann surface, II. Kawasaki Medical Welfare J.,3 (1993), 183–192.Google Scholar
  17. [17]
    H. Mizumoto and H. Hara, Determination of the moduli of ring domains by finite element methods. Int. J. Differential Equations and Applications,3 (2001), 325–337.MATHMathSciNetGoogle Scholar
  18. [18]
    I.N. Molchanov and E.F. Galba, On finite element methods for the Neumann problem. Numer. Math.,46 (1985), 587–598.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    C.B. Morrey, Jr., Multiple Integrals in the Calculus of Variations. Springer-Verlag, Berlin-Heidelberg-New York, 1966.MATHGoogle Scholar
  20. [20]
    A.H. Schatz and L.B. Wahlbin, Interior maximum norm estimates for finite element methods. Math. Comp.,31 (1977), 414–442.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    G. Strang and G.J. Fix, An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs, 1973.MATHGoogle Scholar
  22. [22]
    L.B. Wahlbin, Local behavior in finite element methods. Handbook of Numerical Analysis, Vol.11 (eds. P. G. Ciarlet and J. L. Lions), Elsevier Science Publishers B. V., North-Holland, 1991, 355–522.Google Scholar

Copyright information

© JJIAM Publishing Committee 2002

Authors and Affiliations

  1. 1.Department of Medical InformaticsKawasaki University of Medical WelfareKurashikiJapan

Personalised recommendations