Skip to main content
Log in

Finite element approximations forΔu −qu = f on a Riemann surface

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We concern ourselves with the finite element approximations of the partial differential equation: ∂2 u/∂x 2 + ∂2 u/∂y 2 -qu =f (z =x +iy) on a compact bordered Riemann surface\(\bar \Omega \). It is characteristic of our method that we adopt ordinary triangular meshes and linear elements on a subregion of every fixed parameter disk, our triangulation embeds\(\bar \Omega \) exactly even in the case of curvilinear boundary arcs, and our approximating functions ofu express singular property exactly near inner and corner singularities. We obtain the error estimates for finite element approximations and also apply our results to numerical calculation of some boundary value problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.V. Ahlfors and L. Sario, Riemann Surfaces. Princeton University Press, Princeton, 1960.

    MATH  Google Scholar 

  2. I. Babuška, The rate of convergence for the finite element method. SIAM J. Numer. Anal.,8 (1971), 304–315.

    Article  MATH  MathSciNet  Google Scholar 

  3. I. Babuška and R.B. Kellogg, Nonuniform error estimates for the finite element method. SIAM J. Numer. Anal.,12 (1975), 868–875.

    Article  MATH  MathSciNet  Google Scholar 

  4. I. Babuška, R.B. Kellogg and J. Pitkäranta, Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math.,33 (1979), 447–471.

    Article  MATH  MathSciNet  Google Scholar 

  5. I. Babuška, B.A. Szabo and I.N. Katz, The p-version of the finite element method. SIAM J. Numer. Anal.,18 (1981), 515–545.

    Article  MATH  MathSciNet  Google Scholar 

  6. R.E. Bank and T. Dupont, An optimal order process for solving finite element equations. Math. Comp.,36 (1981), 35–51.

    Article  MATH  MathSciNet  Google Scholar 

  7. R.E. Bank, T.F. Dupont and H. Yserentant, The hierarchical basis multigrid method. Numer. Math.,52 (1988), 427–458.

    Article  MATH  MathSciNet  Google Scholar 

  8. H. Blum and R. Rannacher, Extrapolation techniques for reducing the pollution effect of reentrant corners in the finite element method. Numer. Math.,52 (1988), 539–564.

    Article  MATH  MathSciNet  Google Scholar 

  9. J.H. Bramble and M. Zlámal, Triangular elements in the finite element method. Math. Comp.,24 (1970), 809–820.

    Article  MathSciNet  Google Scholar 

  10. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order (2nd Edition). Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.

    MATH  Google Scholar 

  11. P. Grisvard, Singularities in Boundary Value Problems. Masson, Paris, 1992.

    MATH  Google Scholar 

  12. B.Q. Guo, The h-p version of the finite element method for elliptic equations of order 2m. Numer. Math.,53 (1988), 199–224.

    Article  MATH  MathSciNet  Google Scholar 

  13. H. Hara and H. Mizumoto, Determination of the modulus of quadrilaterals by finite element methods. J. Math. Soc. Japan,42 (1990), 295–326.

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Mizumoto, A finite-difference method on a Riemann surface. Hiroshima, Math. J.,3 (1973), 277–332.

    MATH  MathSciNet  Google Scholar 

  15. H. Mizumoto and H. Hara, Finite element approximations of harmonic differentials on a Riemann surface. Hiroshima Math. J.,18 (1988), 617–654.

    MATH  MathSciNet  Google Scholar 

  16. H. Mizumoto and H. Hara, Maximum principles for finite element solutions on a Riemann surface, II. Kawasaki Medical Welfare J.,3 (1993), 183–192.

    Google Scholar 

  17. H. Mizumoto and H. Hara, Determination of the moduli of ring domains by finite element methods. Int. J. Differential Equations and Applications,3 (2001), 325–337.

    MATH  MathSciNet  Google Scholar 

  18. I.N. Molchanov and E.F. Galba, On finite element methods for the Neumann problem. Numer. Math.,46 (1985), 587–598.

    Article  MATH  MathSciNet  Google Scholar 

  19. C.B. Morrey, Jr., Multiple Integrals in the Calculus of Variations. Springer-Verlag, Berlin-Heidelberg-New York, 1966.

    MATH  Google Scholar 

  20. A.H. Schatz and L.B. Wahlbin, Interior maximum norm estimates for finite element methods. Math. Comp.,31 (1977), 414–442.

    Article  MATH  MathSciNet  Google Scholar 

  21. G. Strang and G.J. Fix, An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs, 1973.

    MATH  Google Scholar 

  22. L.B. Wahlbin, Local behavior in finite element methods. Handbook of Numerical Analysis, Vol.11 (eds. P. G. Ciarlet and J. L. Lions), Elsevier Science Publishers B. V., North-Holland, 1991, 355–522.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heihachiro Hara.

About this article

Cite this article

Hara, H., Mizumoto, H. Finite element approximations forΔu −qu = f on a Riemann surface. Japan J. Indust. Appl. Math. 19, 113–141 (2002). https://doi.org/10.1007/BF03167450

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167450

Key words

Navigation