Skip to main content
Log in

Boat-Sail Voronoi diagram on a curved surface

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We propose a new generalized Voronoi diagram, called a “boat-sail Voronoi diagram on a curved surface”. This is an extension of the boat-sail Voronoi diagram. The boat-sail Voronoi diagram is the partition of a two-dimensional flow field according to the shortest arrival time of a boat. On the other hand, our new Voronoi diagram subdivides the curbed surface with flow into the regions. In this paper, we derive a partial differential equation to solve the boat-sail Voronoi diagram on a curved surface and show some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Aronov, On the geodesic Voronoi diagram of point sites in a simple polygon. Algorithmica,4 (1989), 109–140.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. Aronov and J. O’Rourke, Nonoverlap of the star unfolding. Discrete and Computational Geometry,8 (1992), 219–250.

    Article  MATH  MathSciNet  Google Scholar 

  3. F. Aurenhammer, Voronoi diagrams — A survey of a fundamental geometric data structure. ACM Computing Surveys,23 (1991), 345–405.

    Article  Google Scholar 

  4. L.P. Chew and R. Drysdale, III, Voronoi diagrams based on convex distance functions. Proceedings of the ACM Symposium on Computational Geometry, Baltimore, 1985, 235–244.

  5. M.G. Crandall and P.L. Lions, Two approximations of solutions of Hamilton-Jacobi equations. Mathematics of Computation,43, No. 167 (1984), 1–19.

    Article  MATH  MathSciNet  Google Scholar 

  6. Per-Erik Danielsson and Qingfen Lin, A modified fast marching method. Scandinavian Conference on Image Analysis, LNCS 2749, 2003, 1154–1161.

  7. S. Fortune, Voronoi diagrams and Delaunay triangulations. Computing in Euclidean Geometry (eds. D.-Z. Du and F.K. Hwang), World Scientific Publishing, Singapore, 1992, 193–233.

    Google Scholar 

  8. R. Klein, Abstract Voronoi Diagrams and Their Applications. Lecture Notes in Computer Science, 333 (International Workshop on Computational Geometry, Wurzburg), Springer-Verlag, Berlin, 1988, 148–157.

    Google Scholar 

  9. D.-T. Lee, Two-dimensional Voronoi diagrams in the Lp-metric. Journal of the ACM,27 (1980), 604–618.

    Article  MATH  Google Scholar 

  10. R.E. Miles, Random points, sets and tessellations on the surface. The Indian Journal of Statistics, Series A,33 (1971), 145–174.

    MATH  MathSciNet  Google Scholar 

  11. T. Nishida and K. Sugihara, Voronoi diagram in the flow field. Proceedings of the 14th International Symposium on Algorithms and Computation (ISAAC 2003), Kyoto (Lecture Notes in Computer Science, No. 2906, Springer), 2003, 26–35.

  12. T. Nishida and K. Sugihara, Stable Marker-Particle Method for the Voronoi Diagram in a Flow Field. Technical Reports, METR 2003–44, Department of Mathematical Informatics, The University of Tokyo, 2003.

  13. T. Nishida and K. Sugihara, FEM-Iike Fast Marching Method for the Computation of the Boat-Sail Distance and the Associated Voronoi Diagram. Technical Reports, METR 2003–45, Department of Mathematical Informatics, The University of Tokyo, 2003.

  14. T. Nishida and K. Sugihara, Approximation of the boat-sail Voronoi diagram and its application. Proceedings of the 4th International Conference on Computational Science and Its Applications (ICCSA 2004), Assisi (Lecture Notes in Computer Science, No. 3045, Springer), 2004, 227–236.

  15. A. Okabe, B. Boots, K. Sugihara and S.N. Chiu, Spatial Tessellations—Concepts and Applications of Voronoi Diagrams (Second Edition). John Wiley and Sons, Chichester, 2000.

    Google Scholar 

  16. T.H. Scheike, Anisotropic growth of Voronoi cells. Advances in Applied Probability,26 (1994), 43–53.

    Article  MATH  MathSciNet  Google Scholar 

  17. J.A. Sethian, Fast marching method. SIAM Review,41 (1999), 199–235.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.A. Sethian, Level Set Methods and Fast Marching Methods (Second Edition). Cambridge University Press, Cambridge, 1999.

    MATH  Google Scholar 

  19. J.A. Sethian and A. Vladimirsky, Fast methods for the Eikonal and related Hamilton-Jacobi equations on unstructured meshes. Proceedings of the National Academy of Sciences of the USA,97, No. 11 (2000), 5699–5703.

    Article  MATH  MathSciNet  Google Scholar 

  20. J.A. Sethian and A. Vladimirsky, Ordered upwind methods for static Hamilton-Jacobi equations: Theory and algorithms. SIAM Journal on Numerical Analysis,41, No. 1 (2003), 325–363.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsushi Nishida.

About this article

Cite this article

Nishida, T., Sugihara, K. Boat-Sail Voronoi diagram on a curved surface. Japan J. Indust. Appl. Math. 22, 267–278 (2005). https://doi.org/10.1007/BF03167442

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167442

Key words

Navigation