Skip to main content
Log in

On Euler-like methods for the simultaneous approximation of polynomial zeros

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper we consider some iterative methods of higher order for the simultaneous determination of polynomial zeros. The proposed methods are based on Euler’s third order method for finding a zero of a given function and involve Weierstrass’ correction in the case of simple zeros. We prove that the presented methods have the order of convergence equal to four or more. Based on a fixed-point relation of Euler’s type, two inclusion methods are derived. Combining the proposed methods in floating-point arithmetic and complex interval arithmetic, an efficient hybrid method with automatic error bounds is constructed. Computational aspect and the implementation of the presented algorithms on parallel computers are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ACRITH-XSC IBM, High accuracy arithmetic-extended scientific computation. ACRITH-XSC Language Reference, SC33-6462-00, IBM Corporation, 1990.

  2. G. Alefeld and J. Herzberger, Introduction to interval computation. Academic Press, New York, 1983.

    Google Scholar 

  3. E. Bodewig, On types of convergence and the behavior of approximations in the neighborhood of a multiple root of an equation. Quart. Appl. Math.,7 (1949), 325–333.

    MATH  MathSciNet  Google Scholar 

  4. L. Bomans and D. Roose, Communication benchmarks for the iPSC/2 Hypercube and Distributed Computers. Proc. I European Workshop on Hypercube and Distributed Computers (eds. F. Andre and J.P. Verjus), North Holland, Amsterdam, 1989, 93–104.

    Google Scholar 

  5. W. Börsch-Supan, Residuenabschätzung für Polynom-Nullstellen mittels Lagrange-Inter-polation. Numer. Math.,14 (1970), 287–296.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Carstensen and M.S. Petković, On iteration methods without derivatives for the simultaneous determination of polynomial zeros. J. Comput. Appl. Math.,45 (1993), 251–266.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Cosnard and P. Fraigniaud, Asynchronous Durand-Kerner and Aberth polynomial root finding methods on a distributed memory multicomputer. Parallel Computing,9 (1989), 79–84.

    Article  Google Scholar 

  8. M. Cosnard and P. Fraigniaud, Finding the roots of a polynomial on an MIMD multicomputer. Parallel Computing,15 (1990), 75–85.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Cosnard and P. Fraigniaud, Asynchronous polynomial root finding methods. Research report 90-21, LIP-IMAG, Ecole Normale Supérieure de Lyon, Lyon, 1990.

    Google Scholar 

  10. M. Cosnard and P. Fraigniaud, Analysis of asynchronous polynomial root finding methods on a distributed memory multicomputer. IEEE Trans. on Parallel and Distributed Systems,5 (1994), 639–648.

    Article  Google Scholar 

  11. K. Dočev, Modified Newton method for the simultaneous approximate calculation of all roots of a given algebraic equation (in Bulgarian). Math. Spis. B”lgar. Akad. Nauk,5 (1962), 136–139.

    Google Scholar 

  12. E. Durand, Solution numériques des équations algébraiques, Tom. I: Équations du Type F(x)=0; Racines d’un Polynôme. Masson, Paris, 1960.

    Google Scholar 

  13. L. Euler, Opera Omnia, Ser. I, Vol. X, 422–455.

  14. T.L. Freeman, Calculating polynomial zeros on a local memory parallel computer. Parallel Computing,12 (1989), 351–358.

    Article  MATH  Google Scholar 

  15. I. Gargantini, Parallel Laguerre iterations: Complex case. Numer. Math.,26 (1976), 317–323.

    Article  MATH  MathSciNet  Google Scholar 

  16. I. Gargantini and P. Henrici, Circular arithmetic and the determination of polynomial zeros. Numer. Math.,18 (1972), 305–320.

    Article  MATH  MathSciNet  Google Scholar 

  17. L.H. Jamieson and T.A. Rice, A highly parallel algorithms for root extraction. IEEE Trans. on Comp.,28 (1989), 443–449.

    MathSciNet  Google Scholar 

  18. S. Kanno, N. Kjurkchiev and T. Yamamoto, On some methods for the simultaneous determination of polynomial zeros. Japan J. Indust. Appl. Math.,13 (1996), 267–288.

    Article  MATH  MathSciNet  Google Scholar 

  19. I.O. Kerner, Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen. Numer. Math.,8 (1966), 290–294.

    Article  MATH  MathSciNet  Google Scholar 

  20. R. Klatte, U. Kulisch, M. Neaga, D. Ratz and Ch. Ullrich, PASCAL-XSC, Sprachbeschreibung mit Beispielen, Springer-Verlag, Berlin, 1991.

    MATH  Google Scholar 

  21. R.E. Moore: Interval analysis. Prentice-Hall, New Jersey, 1966.

    MATH  Google Scholar 

  22. J.L. Nicolas and A. Schinzel, Localisation des zéros de polynomes intervenant end théorie du signal. Reserach report, University of Lyon 1, Lyon, 1988.

    Google Scholar 

  23. A.W.M. Nourein, An improvement on Nourein’s method for the simultaneous determination of the zeroes of a polynomial (an algorithm). J. Comput. Appl. Math.,3 (1977), 109–110.

    Article  MATH  Google Scholar 

  24. J.M. Ortega and W.C. Rheinboldt, Iterative solution of nonlinear equations in several variables. Academic Press, New York, 1970.

    MATH  Google Scholar 

  25. M.S. Petković, On an iterative method for simultaneous inclusion of polynomial zeros. J. Comput. Appl. Math.,8 (1982), 51–56.

    Article  MATH  MathSciNet  Google Scholar 

  26. M.S. Petković, Iterative methods for simultaneous inclusion of polynomial zeros. Springer-Verlag, Berlin, 1989.

    MATH  Google Scholar 

  27. M.S. Petković, C. Carstensen and M. Trajković, Weierstrass’ formula and zero-finding methods. Numer. Math.,69 (1995), 353–372.

    Article  MATH  MathSciNet  Google Scholar 

  28. T. Sakurai and M.S. Petković, On some simultaneous methods based on Weierstrass’ correction. J. Comput. Appl. Math.,72 (1996), 275–291.

    Article  MATH  MathSciNet  Google Scholar 

  29. U. Schendel, Introduction to numerical methods for parallel computers. Ellis Horwood, New York, 1984.

    MATH  Google Scholar 

  30. J.F. Traub, Iterative methods for the solution of equations. Prentice Hall, New Jersey, 1964.

    MATH  Google Scholar 

  31. K. Weierstrass, Neuer Beweis des Satzes, dass jede ganze rationale Funktion einer Veränderlichen dargestellt werden kann als ein Product aus linearen Funktionen derstelben Veränderlichen. Ges. Werke,3 (1903), 251–269 (Johnson Reprint Corp., New York, 1967).

    Google Scholar 

  32. J.H. Wilkinson, Rigorous error bounds for computed eigensystems. Computer J.,4 (1961), 230–241.

    Article  MATH  MathSciNet  Google Scholar 

  33. T. Yamamoto, S. Kanno and L. Atanassova, Validated computation of polynomial zeros by the Durand-Kerner method. Topics in Validated Computation (ed. J. Herzberger), North Holand, Amsterdam, 1994, 27–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Petković, M.S., Tričković, S. & Herceg, D. On Euler-like methods for the simultaneous approximation of polynomial zeros. Japan J. Indust. Appl. Math. 15, 295 (1998). https://doi.org/10.1007/BF03167406

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF03167406

Key words

Navigation