Skip to main content
Log in

On nonlinear SOR-like methods, III — Global convergence of SOR, SSOR and USSOR methods for convex problems

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper gives global convergence theorems for the SOR, SSOR and USSOR methods applied to a system of nonlinear equations F(x) = 0 inR n, whereF is the gradient of a twice differentiable elliptic functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alefeld and P. Volkmann, Zur Konvergenz des SSOR-Verfahrens für nichtlineare Gleichungsysteme. Numer. Math.,50 (1986), 111–121.

    Article  MATH  MathSciNet  Google Scholar 

  2. M.E. Brewster and R. Kannan, Nonlinear successive over-relaxation. Numer. Math.,44 (1984), 309–315.

    Article  MATH  MathSciNet  Google Scholar 

  3. M.E. Brewster and R. Kannan, Global convergence of nonlinear successive overrelaxation via linear theory. Computing,34 (1985), 73–79.

    Article  MATH  MathSciNet  Google Scholar 

  4. M.E. Brewster and R. Kannan, Varying relaxation parameters in nonlinear successive overrelaxation. Computing,34 (1985), 81–85.

    Article  MATH  MathSciNet  Google Scholar 

  5. P.G. Ciarlet, Introduction to Numerical Linear Algebra and Optimisation. Cambridge Press, Cambridge, 1988.

    Google Scholar 

  6. L.W. Ehrich, The ad-hoc SOR method: A local relaxation scheme. Elliptic Problem Solvers II (eds. G. Birkhoff and A. Schoenstadt), Academic Press, New York, 1984, 257–269.

    Google Scholar 

  7. L.W. Ehrich, A local relaxation scheme (ad-hoc SOR) applied to nine point and block difference equations. ibid., 81–90.

  8. D. Greenspan and V. Casulli, Numerical Analysis for Applied Mathematics, Science and Engineering. Addison-Wesley, New York, 1988.

    MATH  Google Scholar 

  9. K. Ishihara, Y. Muroya and T. Yamamoto, On nonlinear SOR-like methods, II — Convergence of the SOR-Newton method for mildly nonlinear equations. Japan J. Indust. Appl. Math.,14 (1997), 99–110.

    Article  MATH  MathSciNet  Google Scholar 

  10. C.C.J. Kuo, B.C. Levy and B.R. Musicus, A local relaxation method for solving elliptic PDEs on mesh-connected arrays. SIAM J. Sci. Stat. Comput.,8 (1987), 550–573.

    Article  MATH  MathSciNet  Google Scholar 

  11. X. Li and R.S. Varga, A note on the SSOR and USSOR iterative methods applied to p-cyclic matrices. Iterative Methods for Large Linear Systems (eds. D.R. Kincaid and L.J. Hayes), Academic Press, New York, 1990, 235–249.

    Google Scholar 

  12. J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York, 1970.

    MATH  Google Scholar 

  13. A.M. Ostrowski, On the linear iteration procedures for symmetric matrices. Rend. Mat. Appl.,14 (1954), 140–163.

    MATH  MathSciNet  Google Scholar 

  14. S. Schechter, Relaxation methods for nonlinear problems. Trans. AMS.,104 (1962), 179–189.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Schechter, Relaxation methods for convex problems. SIAM J. Numer. Anal.,5 (1968), 601–612.

    Article  MATH  MathSciNet  Google Scholar 

  16. E.L. Wachspress, Iterative Solution of Elliptic Systems and Applications to the Neutron Diffusion Equations of Reactor Physics. Prentice Hall, Englewood Cliffs, N.J., 1966.

    MATH  Google Scholar 

  17. D.M. Young, Iterative Solution of Large Linear Systems. Academic Press, New York and London, 1971.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partially supported by the Scientific Research Grant-in-Aid from the Ministry of Education, Science, Sports and Culture of Japan.

About this article

Cite this article

Ishihara, K., Yamamoto, T. On nonlinear SOR-like methods, III — Global convergence of SOR, SSOR and USSOR methods for convex problems. Japan J. Indust. Appl. Math. 15, 135–145 (1998). https://doi.org/10.1007/BF03167399

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167399

Key words

Navigation