Skip to main content
Log in

Macroscopic kinetic equation for a genetic algorithm

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

A macroscopic kinetic equation of only four variables for a simple genetic algorithm (SGA) with an on-off type of replication operator and a crossover operator is developed and used to predict several types of evolutionary routes for a wide range of metabolic-ratecontrolling parameters, initial conditions, string lengths, population sizes, and environments. The four variables correspond to the probabilities of the best-adapted species and three mutant groups into which degenerate and redundant strings are classified according to the Hamming distance (HD). The time-dependent frequency distribution along the fitness value is given by an implicit formulation. The environment is also defined in the HD-fitness value space as the frequency distribution of all the possible types of strings without redundancy. It is found that the SGA possesses the capability for exploring quasimacroevolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Back, Evolutionary algorithms. Computing with Biological Methaphors (ed. R. Pation), Chapman and Hall, London, 1994, 227–243.

    Google Scholar 

  2. G. Dietz, Experimentelle Untersuchungen zur Transitionslage an einem Profilmodell mit variabler Oberseiten Kontur in Kompressibler, Subsonischer Stromung. Diplomarbeit, Aerodynamishes Institut der RWTH Aachen, 1992.

  3. G.M. Edelman, Neural Darwinism. Oxford Univ. Press, Oxford, 1989.

    Google Scholar 

  4. M. Eigen, J. MacCaskill and P. Schuster, The molecular quasi-species. Adv. in Chem. Phys.,75, John Wiley and Sons, New York, 1989, 149–263.

    Google Scholar 

  5. M. Eigen and R. Winkler, Das Spiel. R. Piper & Co. Verlag, Munchen, 1979.

    Google Scholar 

  6. D.E. Goldberg, Genetic Algorithms. Addison-Wesley, Reading, Massachusetts, 1989.

    MATH  Google Scholar 

  7. J.J. Grefenstette, Optimization of control parameters for genetic algorithms. IEEE Trans. Syst., Man & Cybern., (1986), 122–128.

  8. W. Greuner, Evolutionary Optimization on RNA Folding Landscapes. Doctoral dissertation, Universitat Wien, 1994.

  9. J.H. Holland, Adaption in Natural and Artificial Systems. The Univ. of Michigan Press, Ann Arbor, 1975.

    MATH  Google Scholar 

  10. S.A. Kauffman, The Origins of Order. Oxford Univ. Press, Oxford, 1993.

    Google Scholar 

  11. H. Kitano, Combination of genetic algorithm and neural network. Genetic Algorithm (ed. H. Kitano), Sangyo Tosho, Tokyo, 1993, 235–262.

    Google Scholar 

  12. A. Konagaya, Genetic algorithm for combination problems. Genetic Algorithm (ed. H. Kitano), Sangyo Tosho, Tokyo, 1993, 133–162.

    Google Scholar 

  13. J.R. Koza, Genetic Programming. MIT Press, Cambridge, 1993.

    Google Scholar 

  14. E.N. Lorentz, Deterministic non-periodic flows. J. Atmos. Sci.,20 (1963), 130–141.

    Article  Google Scholar 

  15. I. Rechenberg, Evolutionalstrategie. Frommann-Holzboog Verlag, Stuttgart, 1973.

    Google Scholar 

  16. J.M. Smith, Evolutionary Genetics. Oxford Univ. Press, Oxford, 1992.

    Google Scholar 

  17. M.D. Vose and G.E. Liepins, Punctuated equilibria in genetic search. Complex Systems,5 (1991), 31–44.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Naitoh, K. Macroscopic kinetic equation for a genetic algorithm. Japan J. Indust. Appl. Math. 15, 87–133 (1998). https://doi.org/10.1007/BF03167398

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167398

Key words

Navigation