Advertisement

Error bounds for a fictitious domain method with Lagrange multiplier treatment on the boundary for a Dirichlet problem

  • Tsorng-Whay Pan
Article
  • 34 Downloads

Abstract

In this article we obtain discrete inf-sup conditions and error bounds for a fictitious domain with Lagrange multiplier treatment for the boundary condition on the curved boundary to an elliptic Dirichlet problem with conforming finite elements of degree one on a uniform mesh.

Key words

Lagrange multiplier fictitious domain method finite element inf-sup condition 

References

  1. [1]
    F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer, New York, 1991.MATHGoogle Scholar
  2. [2]
    J.E. Bussoletti, F.T. Johnson, S.S. Samanth, D.P. Young and R.H. Burkhart, EM-TRANAIR: Steps toward solution of general 3D Maxwell’s equations. Computer Methods in Applied Sciences and Engineering (ed. R. Glowinski), Nova Science, Commack, NY, 1991, 49–72.Google Scholar
  3. [3]
    B.L. Buzbee, F.W. Dorr, J.A. George and G.H. Golub, The direct solution of the discrete Poisson equation on irregular regions. SIAM J. Numer. Anal.,8 (1971), 722–736.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    P. Ciarlet, The Finite Element Methods for Elliptic Problems. North-Holland, 1977.Google Scholar
  5. [5]
    P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér,9, R2 (1975), 77–84.Google Scholar
  6. [6]
    M. Fortin, An analysis of the convergence of mixed finite element methods. RAIRO Anal. Numér,11, R3 (1977), 341–354.MATHMathSciNetGoogle Scholar
  7. [7]
    V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, 1986.MATHGoogle Scholar
  8. [8]
    V. Girault and R. Glowinski, Error analysis of a fictitious domain method applied to a Dirichlet problem. Japan J. Indust. Appl. Math.,12 (1995), 487–514.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    R. Glowinski, T.W. Pan and J. Periaux, A fictitious domain method for Dirichlet problem and applications. Comput. Meth. Appl. Mech. Eng.,111 (1994), 283–303.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    R. Glowinski, T.W. Pan and J. Periaux, A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations. Comput. Meth. Appl. Mech. Eng.,112 (1994), 133–148.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    R. Glowinski and M. F. Wheeler, Domain decomposition and mixed finite element methods for elliptic problems. Domain Decomposition Methods for Partial Differential Equations (eds. R. Glowinski, G.H. Golub, G. Meurant and J. Periaux), SIAM, Philadelphia, 1988, 144–172.Google Scholar
  12. [12]
    R. Glowinski, W. Kinton and M.F. Wheeler, Acceleration of domain decomposition algorithms for mixed finite elements by multi-level methods. Domain Decomposition Methods for Partial Differential Equations (eds. T.F. Chan, R. Glowinski, J. Periaux and O. Widlund), SIAM, Philadelphia, 1990, 263–289.Google Scholar
  13. [13]
    A.H. Schatz and L.B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domain. Part 1. Math. of Comput.,33 (1978), 73–109.CrossRefMathSciNetGoogle Scholar
  14. [14]
    L.B. Wahlbin, Local behavior in finite element methods. Handbook of Numerical Analysis (eds. P.G. Ciarlet and J.L. Lions), North-Holland, 1991, 354.Google Scholar
  15. [15]
    D.P. Young, R.G. Melvin, M.B. Bieterman, F.T. Johnson, S.S. Samanth and J.E. Bussoletti, A locally refined finite rectangular grid finite element method. Application to Computational Physics, J. Comput. Phys.,92 (1991), 1–66.MATHGoogle Scholar

Copyright information

© JJIAM Publishing Committee 1998

Authors and Affiliations

  • Tsorng-Whay Pan
    • 1
  1. 1.Department of MathematicUniversity of HoustonHoustonUSA

Personalised recommendations