Skip to main content
Log in

Numerical analysis of moving boundary problems using the boundary tracking method

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

A new numerical scheme of the boundary tracking method for moving boundary problems is proposed. A key point of the scheme is to avoid concentration of tracking points on the moving boundary, and a convergence theorem is proved for the curve shortening problem. Some numerical examples for the curve shortening problem and the Hele-Shaw problem by the proposed scheme are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Almgren, W.-S. Dai and V. Hakim, Scaling behavior in anisotropic Hele-Shaw flow. Phys. Rev. Lett.,71 (1993), 3461–3464.

    Article  Google Scholar 

  2. S. Angenent, Parabolic equations for curves on surfaces Part I. Curves with p-integrable curvature. Ann. of Math.,132 (1990), 451–483.

    Article  MathSciNet  Google Scholar 

  3. S. Angenent, Parabolic equations for curves on surfaces Part II. Intersections, blow-up and generalized solutions. Ann. of Math.,133 (1991), 171–215.

    Article  MathSciNet  Google Scholar 

  4. Y.G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differential. Geom.,33 (1991), 749–786.

    MATH  MathSciNet  Google Scholar 

  5. Y.G. Chen, Y. Giga, T. Hitaka and M. Honma, A stable difference scheme for computing motion of level surfaces by the mean curvature. Hokkaido Univ. Preprint Ser. in Math.,258 (1994).

  6. X. Chen, The Hele-Shaw problem and area-preserving curve-shortening motions. Arch. Rational Mech. Anal.,123 (1993), 117–151.

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Constantin and M. Pugh, Global solutions for small data to the Hele-Shaw problem. Nonlinearity6 (1993), 393–415.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Duchon and R. Robert, Evolution d’une interface par capillarité et diffusion de Volume I. Existence locale en temps. Ann. Inst. Henri Poincaré Anal. Non linéaire,1 (1984), 361–378.

    MATH  MathSciNet  Google Scholar 

  9. G. Dziuk, An algorithm for evolutionary surfaces. Numer. Math.,58 (1991), 603–611.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Dziuk, Convergence of a semi discrete scheme for the curve shortening flow. Math. Models Methods Appl. Sci.,4 (1994), 589–606.

    Article  MATH  MathSciNet  Google Scholar 

  11. L.C. Evans and J. Spruck, Motion of level sets by mean curvature I. J. Differential Geom.,33 (1991), 635–681.

    MATH  MathSciNet  Google Scholar 

  12. L.C. Evans and J. Spruck, Motion of level sets by mean curvature II. Trans. Amer. Math. Soc.,330 (1992), 321–332.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Gage and R.S. Hamilton, The heat equation shrinking convex plane curves. J. Differential Geom.,23 (1986), 69–96.

    MATH  MathSciNet  Google Scholar 

  14. M.A. Grayson, The heat equation shrinks embedded plane curves to round points. J. Differential Geom.,26 (1987), 285–314.

    MATH  MathSciNet  Google Scholar 

  15. B. Gustafsson, On a differential equation arising in a Hele Shaw flow moving boundary problem. Ark. Mat.,22 (1984), 251–268.

    Article  MATH  MathSciNet  Google Scholar 

  16. B. Gustafsson, Applications of variational inequalities to a moving boundary problem for Hele-Shaw flows. SIAM J. Math. Anal.,16 (1985), 279–300.

    Article  MATH  MathSciNet  Google Scholar 

  17. B. Gustafsson, Existence of weak backward solutions to a generalized Hele Shaw flow moving boundary. Nonlinear Anal., T.M.A.,9 (1985), 203–215.

    Article  MATH  MathSciNet  Google Scholar 

  18. H.S. Hele-Shaw, The flow of water., Nature,58 (1898), 34–36.

    Article  Google Scholar 

  19. S.D. Howison, Complex variable methods in Hele-Shaw moving boundary problems. European J. Appl. Math.,3 (1992), 209–224.

    Article  MATH  MathSciNet  Google Scholar 

  20. Y. Iso, Mathematical foundations for boundary element methods. Sugaku Expositions,3 (1990), 233–252.

    MATH  Google Scholar 

  21. M. Kimura, Accurate numerical scheme for the flow by curvature. Appl. Math. Lett.7 (1994), 69–73.

    Article  MATH  Google Scholar 

  22. M. Kimura, Asymptotic estimation for the condition numbers in BEM. Numer. Math.,73 (1996), 209–233.

    Article  MATH  MathSciNet  Google Scholar 

  23. O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and quasilinear equations of parabolic type. Transi. Math. Monographs23, AMS, 1968.

  24. H. Lamb, Hydrodynamics, 6th ed. Dover, 1932.

  25. S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys.,79 (1988), 12–49.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Reissig and L. Wolfersdorf, A simplified proof for a moving boundary problem for Hele-Shaw flows in the plane. Ark. Mat.,31 (1993), 101–116.

    Article  MATH  MathSciNet  Google Scholar 

  27. J.A. Sethian, Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws. J. Differential Geom.,31 (1990), 131–161.

    MATH  MathSciNet  Google Scholar 

  28. A.N. Varchenko and P.I. Etingof, Why the boundary of a round drop becomes a curve of order four. Univ. Lec. Ser.3, AMS, (1992).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Kimura.

About this article

Cite this article

Kimura, M. Numerical analysis of moving boundary problems using the boundary tracking method. Japan J. Indust. Appl. Math. 14, 373–398 (1997). https://doi.org/10.1007/BF03167390

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167390

Key words

Navigation