Skip to main content
Log in

Optimization and relaxation of nonlinear elliptic control systems

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper we study the existence and relaxation theory for distributed parameter systems driven by nonlinear elliptic differential equations. The existence theory is developed for systems with a priori feedback (closed loop systems), while the main results of the relaxation results are proved for open loop systems. We start with some existence theorems for nonlinear elliptic inclusions which are then used to establish the existence of admissible states for the optimal control problem. Then with the help of a convexity-type condition, we formulate and prove the main existence theorem for the problem. The proof employs the so-called reduction technique. Then we formulate three different versions of the relaxed problem, we show that they are equivalent and finally we show that they have the same value as the original problem and their set of states captures the asymptotic behavior of the sequences of original states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Berkovitz, Optimal Control Theory. Springer-Verlag, New York, 1974.

    MATH  Google Scholar 

  2. P. Billingsley, Convergence of Probability Measures. Wiley, New York, 1968.

    MATH  Google Scholar 

  3. N.N. Bogoljubov, Sur quelques méthodes nouvelles en calcul des variations. Annali di Mat. Pura ed Appl.,7 (1930), 249–271.

    Google Scholar 

  4. G. Buttazzo, Some relaxation problems in optimal control theory. J. Math. Anal. Appl.,125 (1987), 272–287.

    Article  MATH  MathSciNet  Google Scholar 

  5. L. Cesari, Optimization Theory and Applications. Applications of Mathematics, Vol.17, Springer-Verlag, New York, 1983.

    Google Scholar 

  6. I. Ekeland, Sur le control optimal des systèmes gouvernés par des equations elliptiques. J. Punct. Anal.,9 (1972), 1–62.

    Article  MATH  MathSciNet  Google Scholar 

  7. A.F. Filippov, On certain questions in the theory of optimal control. SIAM J. Control,1 (1962), 76–84.

    MATH  Google Scholar 

  8. R.V. Gamkrelidze, Principles of Optimal Control Theory. Plenum Press, New York, 1978.

    MATH  Google Scholar 

  9. S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory. Kluwer, Dordrecht, The Netherlands, 1997.

    MATH  Google Scholar 

  10. P. Lindqvist, On the equationdiv(∥Dxp−2 Dx) + λ¦x¦p−2 x = 0. Proc. AMS,109 (1990), 157–164.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, New York, 1971.

    MATH  Google Scholar 

  12. C. Olech, A characterization ofL 1-weak lower semicontinuity of integral functionals. Bull. Acad. Polon. Sci.,25 (1977), 135–142.

    MATH  MathSciNet  Google Scholar 

  13. N.S. Papageorgiou, Existence theory for nonlinear distributed parameter optimal control problems. Japan J. Indust. Appl. Math.,12 (1995), 457–485.

    Article  MATH  MathSciNet  Google Scholar 

  14. K.R. Parthasarathy, Probability Measures on Metric Spaces. Academic Press, New York, 1967.

    MATH  Google Scholar 

  15. M.-F. Saint-Beuve, Some topological properties of vector measures with bounded variation and its applications. Annali di Math. Pura ed Appl.,116 (1978), 317–379.

    Article  Google Scholar 

  16. J. Warga, Optimal Control of Differential and Functional Equations. Academic Press, New York, 1972.

    MATH  Google Scholar 

  17. L.C. Young, Generalized curves and the existence of an attained absolute minimum in the Calculus of Variations. Comptes Rendus de la Société des Sci. et des Lettres de Varsovie,30 (1937), 212–234.

    MATH  Google Scholar 

  18. M. Struwe, Variational Methods. Springer-Verlag, Berlin, 1990.

    MATH  Google Scholar 

  19. J.I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol. 1, Elliptic Equations. Research Notes in Math., Vol.106, Pitman, London, 1985.

    Google Scholar 

  20. D. Zubrinic, Existence of solutions of −Δu= g(z, u, Du). Glasnik Matematički,20 (1985), 363–372.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kourogenis, N.C., Papageorgiou, N.S. Optimization and relaxation of nonlinear elliptic control systems. Japan J. Indust. Appl. Math. 17, 453–479 (2000). https://doi.org/10.1007/BF03167377

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167377

Key words

Navigation