Skip to main content
Log in

Existence of self-similar solutions to a parabolic system modelling chemotaxis

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We investigate a semilinear elliptic equation

with a parameter λ > 0 and a constant 0 < ε < 2, and obtain a structure of the pair (λ, υ) of a parameter and a solution which decays at infinity. This equation arises in the study of self-similar solutions for the Keller-Segel system. Our main results are as follows: (i) There exists a λ* > 0 such that if 0 < λ < λ*, (SE) has two distinct solutionsυ λ and guλ satisfyingυ λ < guλ, and that if λ > λ*, (SE) has no solution, (ii) If λ = λ* and 0 < ε < 1, (SE) has the unique solution υ*; (iii) The solutionsυ λ and υλ are connected through υ*.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl.,8 (1998), 715–743.

    MATH  MathSciNet  Google Scholar 

  2. S. Childress, Chemotactic collapse in two dimensions. Lecture Notes in Biomath.,55, Springer, 1984, 217–237.

  3. S. Childress and J.K. Percus, Nonlinear aspects of chemotaxis. Math. Biosci.,56 (1981), 217–237.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Courant and D. Hilbert, Method of Mathematical Physics, Vol. 1. Interscience, 1953.

  5. M.G. Crandall and P.H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems. Arch. Rational Mech. Anal.,58 (1975), 207–218.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat equation. Nonlinear Anal.,11 (1987), 1103–1133.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Gillbarg and N. Trudinger, Elliptic Partial Differential Eqautions of Second Order (2nd ed.). Springer, 1983.

  8. S. Kawashima, Self-similar solutions of a convection-diffusion equation. Lecture Notes in Numer. Appl. Anal.,12 (1993), 123–136.

    MathSciNet  Google Scholar 

  9. E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol.,26 (1970), 399–415.

    Article  Google Scholar 

  10. Y. Mizutani and T. Nagai, Self-similar radial solutions to a system of partial differential equations modelling chemotaxis. Bull. Kyushu Inst. Tech. (Math. Natur. Sci.),42 (1995), 19–28.

    MATH  MathSciNet  Google Scholar 

  11. Y. Mizutani, N. Muramoto and K. Yoshida, Self-similar radial solutions to a parabolic system modelling chemotaxis via variational method. Hiroshima Math. J.,29 (1999), 145–160.

    MATH  MathSciNet  Google Scholar 

  12. T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkcialaj Ekvacioj,40 (1997), 411–433.

    MATH  MathSciNet  Google Scholar 

  13. T. Ogawa, A proof of Trudinger’s inequality and its application to nonlinear Schrödinger equations. Nonlinear Anal.,14 (1990), 765–769.

    Article  MATH  MathSciNet  Google Scholar 

  14. D.H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J.,21 (1972), 979–1000.

    Article  MATH  MathSciNet  Google Scholar 

  15. T. Suzuki, Semilinear Elliptic Equations. Gakkotosho, 1994.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Muramoto, N., Naito, Y. & Yoshida, K. Existence of self-similar solutions to a parabolic system modelling chemotaxis. Japan J. Indust. Appl. Math. 17, 427–451 (2000). https://doi.org/10.1007/BF03167376

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167376

Key words

Navigation