Advertisement

Axially symmetric electron beam trajectory simulation

  • Youichi Ose
  • Kiyomi Yoshinari
Article

Abstract

An axially symmetric simulator for the Schottky emission gun has been developed using the boundary-fitted coordinate transformation method. The domain decomposition method is successfully employed with multi-layer overlapping, which allows complicated electrode structures to be modeled and the electric potential computation to converge quickly. The angular intensity distribution of Swanson’s Schottky emission gun is analyzed, and good agreement is seen with his experimental data. The simulation results show that angular intensity and virtual source size are remarkably dependent on the real emitter size.

Key words

electron gun simulation electric field beam trajectory electron microscope 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D.W. Tuggle and L.W. Swanson, Emission characteristics of the ZrO/W thermal field electron source. J. Vac. Sci. Technol.,B3(1), Jan/Feb (1985), 220–223.Google Scholar
  2. [2]
    L.W. Swanson and G.A. Schwind, Handbook of Charged Particle Optics. CRC Press, NY, 1997, 77–102.Google Scholar
  3. [3]
    N.K. Kang, D.W. Tuggle and L.W. Swanson, A numerical analysis of the electric field and trajectories with and without the effect of the space charge for a field electron source. Optik,63, No. 4 (1983), 313–331.Google Scholar
  4. [4]
    A. Takaoka and K. Ura, Analysis of space-charge-limited LaB6 electron gun. Optik,75, No. 1 (1986), 20–25.Google Scholar
  5. [5]
    X. Zhu and E. Munro, A computer program for electron gun design using second-order finite elements. J. Vac. Sci. Technol.,B7, Nov/Dec (1989), 1862–1869.Google Scholar
  6. [6]
    C.W. Mastin and J.F. Thompson, Transformation of three dimensional regions onto rectangular regions by elliptic systems. Numerische Mathematik,29 (1978), 397–407.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    K. Miki and T. Takagi, Numerical solution of Poisson’s equation with arbitrarily shaped boundaries using a domain decomposition and overlapping technique. J. Comput. Phys.,67, No. 1 (1986), 263–278.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    A. Khursheed, The boundary fitted coordinate method to improve the numerical analysis of electron optical systems. Scanning,16 (1994), 201–208.CrossRefGoogle Scholar
  9. [9]
    Y. Ose, T. Takagi, H. Sano and K. Miki, 3-D electron optics simulation method for cathode ray tube. IEEE Trans. Mag.,24 (1988), 552–555.CrossRefGoogle Scholar
  10. [10]
    Y. Ose, Y. Higuchi and S. Shirakawa, Three-dimensional numerical simulation of secondary electron beam trajectory for SEM. Inst. Phys. Conf. Ser. No. 119, EAMG 91, 1991, 201–204.Google Scholar
  11. [11]
    M.J. Fransen, J.S. Faber, Th.L. van Rooy, P.C. Tiemeijer and P. Kruit, Experimental evaluation of the extended Schottky model for ZrO/W electron emission. J. Vac. Sci. Technol.,B16, Jul/Aug (1998), 2063–2072.Google Scholar
  12. [12]
    P.W. Hawkes and E. Kasper, Principles of Electron Optics (Vol.2). Academic Press, NY, 1996, Chap. 45.Google Scholar

Copyright information

© JJIAM Publishing Committee 2000

Authors and Affiliations

  • Youichi Ose
    • 1
  • Kiyomi Yoshinari
    • 2
  1. 1.Instruments, Hitachi, Ltd.Hitachinaka, IbarakiJapan
  2. 2.Hitachi Research LaboratoryHitachi, Ltd.Hitachi, IbarakiJapan

Personalised recommendations