On the regularity property for solutions of the equation of linear elastostatics with discontinuous boundary condition

  • Kazuya Hayasida
  • Kohji Wada


The equation of linear elastostatics was treated in the book of Duvaut and Lions [2], where the existence and the uniqueness of solutions were shown under discontinuous boundary condition. In this article we will prove some regularity property for these solutions.

Key words

linear elastostatics stress tensor variational method Dirichlet-Neumann mixed type 


  1. [1]
    J. Bailet, Régularité de la solution d’un problème mêlé dans un domaine polygonal ou polyédral. Ann. Fac. Sci. Toulouse Math.,5 (1996), 5–27.MATHMathSciNetGoogle Scholar
  2. [2]
    G. Duvaut and J.L. Lions, Inequalites in Mechanics and Physics. Springer, 1976.Google Scholar
  3. [3]
    K. Hayasida, and H. Nagase, On systems of variational inequalities with mixed boundary conditions. Funkcialaj Ekvacioj,28 (1985), 121–138.MathSciNetGoogle Scholar
  4. [4]
    H. Ito, On certain mixed-type boundary-value problems of elastostatics. Tsukuba J. Math.,14 (1990), 133–153.MATHMathSciNetGoogle Scholar
  5. [5]
    S. Mizohata, Theory of Partial Differential Equations. Cambridge, 1973.Google Scholar
  6. [6]
    M.K.V. Murthy, and G. Stampacchia, A variational inequality with mixed boundary conditions. Israel J. Math.,13 (1972), 188–224.CrossRefMathSciNetGoogle Scholar
  7. [7]
    E. Shamir, Regularization of mixed second order elliptic problems. Israel J. Math.,6 (1968), 150–168.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© JJIAM Publishing Committee 1999

Authors and Affiliations

  • Kazuya Hayasida
    • 1
  • Kohji Wada
    • 2
  1. 1.Department of Computational Science, Faculty of ScienceKanazawa UniversityKanazawaJapan
  2. 2.Department of Mathematics, Faculty of ScienceKanazawa UniversityKanazawaJapan

Personalised recommendations