Skip to main content
Log in

Iteratively generated pseudopotentials in electronic structure calculations

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We present an iterative procedure to generate first-principles, norm-conserving pseudopotentials which are of an analytic form and separable by construction with fewer nonlocal projectors than conventional ones. The procedure consists of two steps: First, reference pseudowavefunctions and eigenvalues for an atom are determined by a conventional method. Second, trial pseudowavefunctions and eigenvalues are calculated for the pseudopotentials with adjustable parameters repeatedly until they match the reference ones within some tolerance. The pseudopotentials allow us to evaluate Hamiltonian matrix elements efficiently and less likely to yield spurious solution. Examples for copper and zinc are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.C. Allan and M.P. Teter, Nonlocal pseudopotentials in molecular-dynamical density-functional theory: application to SiO2. Phys. Rev. Lett.,59 (1987), 1136–1139.

    Article  Google Scholar 

  2. R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett.,55 (1985), 2471–2474.

    Article  Google Scholar 

  3. E.R. Davidson, The iterative calculation of a few of the lowest eigenvalues and correspond- ing eigenvectors of large real symmetric matrices. J. Comput. Phys.,17 (1975), 87–94.

    Article  Google Scholar 

  4. S. Goedecker, M. Teter and J. Hutter, Separable dual-space Gaussian pseudopotentials. Phys. Rev. B,54 (1996), 1703–1710.

    Article  Google Scholar 

  5. X. Gonze, R. Käckell and M. Scheffler, Ghost states for separable, norm-conserving,ab initio pseudopotentials. Phys. Rev. B,41(1990), 12264–12267.

    Article  Google Scholar 

  6. X. Gonze, R. Stumpf and M. Scheffler, Analysis of separable potentials. Phys. Rev. B,44 (1991), 8503–8513.

    Article  Google Scholar 

  7. G.H. Golub and C.F. van Loan, Matrix Computations. The John Hopkins University Press, Baltimore, MD., 1993.

    Google Scholar 

  8. D.R. Hamann, M. Schlüter and C. Chiang, Norm-conserving pseudopotentials. Phys. Rev. Lett.,43 (1979), 1494–1497.

    Article  Google Scholar 

  9. J. Ihm, A. Zunger and M.L. Cohen, Momentum-space formalism for the total energy of solids. J. Phys. C,12 (1979), 4409–4422.

    Article  Google Scholar 

  10. G.P. Kerker, Non-singular atomic pseudopotentials for solid state applications. J. Phys. C,13 (1980), L189–194.

    Article  Google Scholar 

  11. L. Kleinman and D.M. Bylander, Efficacious form for model pseudopotentials. Phys. Rev. Lett.,48 (1982), 1425–1428.

    Article  Google Scholar 

  12. G. Kresse and J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. C,6 (1994), 8245–8257.

    Google Scholar 

  13. V.L. Moruzzi and C.B. Sommers, Calculated Electronic Properties of Ordered Alloys: A Handbook. World Scientific, River Edge, NJ., 1995.

    Google Scholar 

  14. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias and J.D. Joannopoulos, Iterative minimization techniques forab initio total-energy calculations: molecular-dynamics and conjugate gradients. Rev. Mod. Phys.,64 (1992), 1045–1097.

    Article  Google Scholar 

  15. WE. Pickett, Pseudopotential methods in condensed matter applications. Comput. Phys. Rep.,9 (1989), 115–197.

    Article  Google Scholar 

  16. A.M. Rappe, K.M. Rabe, E. Kaxiras and J.D. Joannopoulos, Optimized pseudopotentials. Phys. Rev. B,41 (1990), 1227–1230, erratum, Phys. Rev. B,44 (1991), 13175–13176.

    Article  Google Scholar 

  17. Y. Saad, Numerical Methods for Large Eigenvalue Problems. Manchester University Press, Oxford Road, Manchester, UK, 1992.

    MATH  Google Scholar 

  18. Th. Starkloff and J.D. Joannopoulos, Local pseudopotential theory for transition metals. Phys. Rev. B,16 (1977), 5212–5215.

    Article  Google Scholar 

  19. W.J. Stevens, H. Basch and M. Krauss, Compact effective potentials and efficient shared-exponent basis set for the first- and second-row atoms. J. Chem. Phys.,81 (1984), 6026–6033.

    Article  Google Scholar 

  20. W.C. Topp and J.J. Hopfield, Chemically motivated pseudopotential for sodium. Phys. Rev. B,7 (1973), 1295–1303.

    Article  Google Scholar 

  21. N. Troullier and J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B,43(1991), 1993–2006.

    Article  Google Scholar 

  22. N. Troullier and J.L. Martins, Efficient pseudopotentials for plane-wave calculations II. Operators for fast iterative diagonalization. Phys. Rev. B,43 (1991), 8861–8869.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Sawamura, A., Keishi, T. & Kaji, M. Iteratively generated pseudopotentials in electronic structure calculations. Japan J. Indust. Appl. Math. 17, 265 (2000). https://doi.org/10.1007/BF03167347

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1007/BF03167347

Key words

Navigation