Skip to main content
Log in

Global solutions to the relativistic Euler equation with spherical symmetry

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

The relativistic Euler equation inR 3 is given by

$$\begin{gathered} \frac{\partial }{{\partial t}} \left( {\frac{{\rho c^2 + P}}{{c^2 }} \frac{1}{{1 - \frac{{\upsilon ^2 }}{{c^2 }}}} - \frac{P}{{c^2 }}} \right) + \sum\limits_{j = 1}^3 {\frac{\partial }{{\partial x_j }}} \left( {\frac{{\rho c^2 + P}}{{c^2 }} \frac{{\upsilon _j }}{{1 - \frac{{\upsilon ^2 }}{{c^2 }}}}} \right) = 0, \hfill \\ \frac{\partial }{{\partial t}} \left( {\frac{{\rho c^2 + P}}{{c^2 }} \frac{{\upsilon _i }}{{1 - \frac{{\upsilon ^2 }}{{c^2 }}}}} \right) + \sum\limits_{j = 1}^3 {\frac{\partial }{{\partial x_j }}} \left( {\frac{{\rho c^2 + P}}{{c^2 }} \frac{{\upsilon _i \upsilon _j }}{{1 - \frac{{\upsilon ^2 }}{{c^2 }}}} + \delta _{ij} P} \right) = 0, i = 1,2,3. \hfill \\ \end{gathered} $$

. In 1993, Smoller and Temple have constructed global weak solutions to this equation for 1 dimensional case. In this article we succeed, to show the existence of global weak solutions with spherical symmetry. Suppose that solutions are spherically symmetric. Then the equation becomes

$$\begin{gathered} \frac{\partial }{{\partial t}} \left( {\frac{{\rho c^2 + P}}{{c^2 }} \frac{1}{{1 - \frac{{\upsilon ^2 }}{{c^2 }}}} - \frac{P}{{c^2 }}} \right) + \frac{\partial }{{\partial r}} \left( {\frac{{\rho c^2 + P}}{{c^2 }} \frac{\upsilon }{{1 - \frac{{\upsilon ^2 }}{{c^2 }}}}} \right) + \frac{{\rho c^2 + P}}{{c^2 }} \frac{1}{{1 - \frac{{\upsilon ^2 }}{{c^2 }}}}\frac{{2\upsilon }}{r} = 0, \hfill \\ \frac{\partial }{{\partial t}} \left( {\frac{{\rho c^2 + P}}{{c^2 }} \frac{\upsilon }{{1 - \frac{{\upsilon ^2 }}{{c^2 }}}}} \right) + \frac{\partial }{{\partial r}} \left( {\frac{{\rho c^2 + P}}{{c^2 }} \frac{{\upsilon ^2 }}{{1 - \frac{{\upsilon ^2 }}{{c^2 }}}} + P} \right) + \frac{{\rho c^2 + P}}{{c^2 }} \frac{\upsilon }{{1 - \frac{{\upsilon ^2 }}{{c^2 }}}}\frac{{2\upsilon ^2 }}{r} = 0. \hfill \\ \end{gathered} $$

. To obtain our desired uniform estimates, we use the transformation

$$\upsilon = c tanh u = c\frac{{e^u - e^{ - u} }}{{e^u + e^{ - u} }}.$$

. This transformation is well-known among physicians and also plays very important role in our paper. We firmly believe that this transformation is also very useful for analyzing this equation mathematically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math.,18 (1965), 697–715.

    Article  MATH  MathSciNet  Google Scholar 

  2. T. Makino and S. Ukai, Local smooth solutions of the relativistic Euler equation. Preprint.

  3. T. Makino K. Mizohata and S. Ukai, The global weak solutions of the compressible Euler equation with spherical symmetry. Japan J Indust. Appl. Math.,9 (1992), 431–449.

    Article  MATH  MathSciNet  Google Scholar 

  4. T. Makino, K. Mizohata and S. Ukai, The global weak solutions of the compressible Euler equation with spherical symmetry II. Japan J. Indust. Appl. Math.,11 (1994), 417–426.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. Mizohata, Global weak solutions for the equation of isothermal gas around a star. J. Math. Kyoto Univ.,34 (1994), 585–598.

    MATH  MathSciNet  Google Scholar 

  6. K. Mizohata, Equivalence of Eulerian and Lagrangian weak solutions of the compressible Euler equation with spherical symmetry. Kodai Math. J.,17 (1994), 69–81.

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Nishida, Global solutions for an initial boundary value problem of a quasilinear hyperbolic system. Proc. Japan Acad.,44 (1968), 642–646.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Smoller and B. Temple, Global solutions of the relativistic Euler equations Comm. Math. Phys.,156 (1993), 67–99.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Mizohata.

About this article

Cite this article

Mizohata, K. Global solutions to the relativistic Euler equation with spherical symmetry. Japan J. Indust. Appl. Math. 14, 125–157 (1997). https://doi.org/10.1007/BF03167315

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167315

Key words

Navigation