Skip to main content
Log in

On nonlinear SOR-like methods, II — Convergence of the SOR-Newton method for mildly nonlinear equations

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

This is a continuation of a previour paper [22]. Local and global convergence theorems are established for the SOR-Newton method applied to a system of mildly nonlinear equations which arises from the usual discretization of the Dirichlet problem for the equation Δu=f(u), wheref is continuously differentiable andf′≥0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.F. Ames, Numerical Methods for Partial Differential Equations. Third Edition. Academic Press, New York, 1992.

    MATH  Google Scholar 

  2. O. Axelsson, Iterative Solution Methods. Cambridge Univ. Press, 1994.

  3. M.E. Brewster and R. Kannan, Nonlinear successive over-relaxation. Numer., Math.,44 (1984), 309–315.

    Article  MATH  MathSciNet  Google Scholar 

  4. M.E. Brewster and R. Kannan, Global convergence of nonlinear successive overrelaxation via linear theory. Computing,34 (1985), 73–79.

    Article  MATH  MathSciNet  Google Scholar 

  5. M.E. Brewster and R. Kannan, Varying relaxation parameters in nonlinear successive overrelaxation. Computing,34 (1985), 81–85.

    Article  MATH  MathSciNet  Google Scholar 

  6. M.E. Brewster and R. Kannan, A computational process for choosing the relaxation parameter in nonlinear SOR. Computing,37 (1986), 19–29.

    Article  MATH  MathSciNet  Google Scholar 

  7. P.G. Ciarlet, Introduction to Numerical Linear Algebra and Optimisation. Cambridge Press, Cambridge, 1988.

    Google Scholar 

  8. D. Greenspan, Introductory Numerical Analysis of Elliptic Boundary Value Problems. Harper & Row, New York, 1965.

    MATH  Google Scholar 

  9. D. Greenspan and V. Casulli, Numerical Analysis for Applied Mathematics. Science, and Engineering. Addison-Wesley, New York, 1988.

    MATH  Google Scholar 

  10. D. Greenspan and S.V. Parter, Mildly nonlinear elliptic partial differential equations and their numerical solution. II. Numer. Math.,7 (1965), 129–146.

    Article  MATH  MathSciNet  Google Scholar 

  11. D. Greenspan and M. Yohe, On the approximate solution of Δu=f(u). Comm. ACM,6 (1963), 564–568.

    Article  MATH  MathSciNet  Google Scholar 

  12. W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations. Springer-Verlag, 1994.

  13. K. Ishihara, Successive overrelaxation method with projection for finite element solutions of nonlinear, radiation cooling problems. Computing,38 (1987), 117–132.

    Article  MATH  MathSciNet  Google Scholar 

  14. K. Ishihara, Successive overrelaxation methods with projection for finite element solutions applied to the Dirichlet problem of the nonlinear elliptic equatioin Δu=bu 2. Computing,40 (1988), 51–65.

    Article  MATH  MathSciNet  Google Scholar 

  15. K. Ishihara, Projected successive overrelaxation method for finite element solutions to the Dirichlet problem for a system of nonlinear elliptic equations. J. Comput. Appl. Math.,38 (1991), 185–200.

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Ishihara, Optimum SOR iterations for finite difference equations arising from nonlinear periodic boundary value problems. Math. Japon.,45 (1997) (to appear).

  17. C.C.J. Kuo, B.C. Levy and B.R. Musicus, A local relaxation method for solving elliptic PDEs on mesh-connected arrays. SIAM J. Sci. Statist. Comput.,8 (1987), 550–573.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York, 1970.

    MATH  Google Scholar 

  19. J.M. Ortega and M.L. Rockoff, Nonlinear difference equations and Gauss-Seidel type iterative methods. SIAM J. Numer. Anal.,3 (1966), 497–513.

    Article  MATH  MathSciNet  Google Scholar 

  20. S.V. Parter, Mildly nonlinear elliptic partial differential equations and their numerical solution. I. Numer. Math.,7 (1965), 113–128.

    Article  MATH  MathSciNet  Google Scholar 

  21. R.S. Varga, Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1962.

    Google Scholar 

  22. T. Yamamoto, On nonlinear SOR-like methods, I — Applications to simultaneous methods for polynomial zeros. Japan J. Indust. Appl. Math.,14 (1997), 87–97.

    Article  MATH  MathSciNet  Google Scholar 

  23. D.M. Young, Iterative Solution of Large Linear Systems. Academic Press, New York and London, 1971.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partially supported by the Scientific Research Grant-in-Aid from the Ministry of Education, Science, Sports and Culture of Japan.

About this article

Cite this article

Ishihara, K., Muroya, Y. & Yamamoto, T. On nonlinear SOR-like methods, II — Convergence of the SOR-Newton method for mildly nonlinear equations. Japan J. Indust. Appl. Math. 14, 99–110 (1997). https://doi.org/10.1007/BF03167313

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167313

Key words

Navigation