Skip to main content
Log in

A geometrical formulation of the renormalization group method for global analysis II: Partial differential equations

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

It is shown that the renormalization group (RG) method for global analysis can be formulated in the context of the classical theory of envelopes: Several examples from partial differential equations are analyzed. The amplitude equations which are usually derived by the reductive perturbation theory are shown to be naturally derived as the equations describing the envelopes of the local solutions obtained in the perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.C.G. Stuckelberg and A. Petermann, La normalisation des constantes dans la theorie des quanta. Helv. Phys. Acta,26 (1953), 499–520; M. Gell-Mann and F.E. Low, Quantum Electrodynamics at Small Distances. Phys. Rev.,95 (1953), 1300–1312. See also for the significance of the latter paper, K. Wilson, Renormalization group and strong interactions. Phys. Rev., D3 (1971), 1818–1846, and S. Weinberg, Why the renormalization group is a good thing. Asymptotic Realms of Physics (eds. by A.H. Guth et al.), MIT Press, 1983, 1–19.

    MathSciNet  Google Scholar 

  2. As a review article, J. Zinn-Justin, Quantum Field Theory and Critical Phenomena Clarendon Press. Oxford, 1989.

    Google Scholar 

  3. G. Jona-Lasinio, Relativistic Field Theories with Symmetry-Breaking, Solutions. Nuovo Cimento,34 (1964), 1790.

    Article  Google Scholar 

  4. S. Coleman and E. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D7 (1973), 1888–1910.

    Article  Google Scholar 

  5. M. Sher, Electroweak Higgs potentials and vacuum stability. Phys. Rep.,179 (1989), 273; M. Bando, T. Kugo, N. Maekawa and H. Nakano, Improving the effective potential. Phys. Lett., B301 (1993), 83–89; Improving the effective potential — multi-mass-scale case —. Progr. Theoret. Phys.,90 (1993), 405–418; H. Nakano and Y. Yoshida, Improving the effective potential, multimass problem, and modified mass-dependent scheme., Phys. Rev., D49 (1994), 5393–5407; C. Ford, Multi-scale renormalization group improvement of the effective potenial. Phys. Rev. D50 (1994), 7531–7537; and references cited therein.

    Article  Google Scholar 

  6. M. Suzuki, Statistical mechanical theory of cooperative phenomena I. General theory of fluctuations, coherent anomalies and scaling exponents with simple applications to critical phenomena J. Phys. Soc. Japan,55 (1986) 4205–4230; Statistical Mechanics. Iwanami Shoten, 1994 (in Japanese).

    Article  Google Scholar 

  7. M.J. Feigenbaum, Quantitative universality for a class of nonlinear transformation. J. Statist. Phys.,19 (1978), 25–52; The fixed point of classical dynamical evolution and chaos. Asymptotic Realms of Physics (eds. A.H. Guth et al.), MIT Press, 1983, 70–85.

    Article  MATH  MathSciNet  Google Scholar 

  8. N. Goldenfeld, O. Martin and Y. Oono, Intermediate asymptotics and renormalization group theory J. Sci. Comput.,4, (1989), 385–402; N. Goldenfeld, O. Martin, Y. Oono and F. Liu, Anomalous dimensions and the renormalization group in a nonlinear diffusion process. Phys. Rev. Lett.64 (1990), 1361–1364; N.D. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group. Addison-Wesley, Reading, Mass., 1992.

    Article  MathSciNet  Google Scholar 

  9. L.Y. Chen, N. Goldenfeld, Y. Oono and G. Paquette, Selection, stability, and renormalization. Physica, A204 (1994), 111; G. Paquette, L.Y. Chen, N. Goldenfeld and Y. Oono, Structural stability and renormalization. group for propagating fronts. Phys. Rev. Lett.72 (1994), 76–79; L.Y. Chen, N. Goldenfeld and Y. Oono, Renormalization group theory for global asymptotic analysis. Phys. Rev. Lett.73 (1994), 1311–1315.

    Article  Google Scholar 

  10. L.Y. Chen, N. Goldenfeld and Y. Oono, The renomalization group and singular perturbations: Multiple-scales, boundary layers and reductive perturbation theory. Phys Rev., E51 (1996), 5577.

    Article  Google Scholar 

  11. T. Kunihiro, A geometrical formulation of the renomalization group method for global analysis. Progr. Theoret. Phys.,94, (1995) 503–514; (E)95 (1996), 835.

    Article  MathSciNet  Google Scholar 

  12. See any text book on mathematical analysis; for example, R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 2. Interscience Publishers, New York, 1962; S. Mizohata, Mathematical Analysis 2. Asakura Shoten, 1973, (in Japanese).

    MATH  Google Scholar 

  13. G.I. Barenblatt, Similarity, Self-Similarity, and Intermediate Asymptotics. Consultant Bureau, New York, 1979; Dimensional Analysis. Gordon and Breach, New York, 1987.

    MATH  Google Scholar 

  14. M.C. Cross and P.C. Hohenberg, Pattern formation outside of equilibrium. Rev. Modern Phys.,65 (1993), 851–1112 and references cited therein.

    Article  Google Scholar 

  15. J. Swift and P.C. Hohenberg, Hydrodynamic fluctuations at the convective instability. Phys. Rev., A15 (1977), 319–328.

    Article  Google Scholar 

  16. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence. Springer-Verlag 1984.

  17. T. Kunihiro, The renormalization-group method applied to asymptotic analysis of vector fiels. Progr. Theoret. Phys.,97 No.2 (1997), in press.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kunihiro, T. A geometrical formulation of the renormalization group method for global analysis II: Partial differential equations. Japan J. Indust. Appl. Math. 14, 51–69 (1997). https://doi.org/10.1007/BF03167310

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167310

Key words

Navigation