Skip to main content
Log in

Dynamics of interfaces in a scalar parabolic equation with variable diffusion coefficients

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Consider the equationu t = ε2 div(D(x)∇u) +f(u; ε) in ℝn, whereD(x) is a positive functionx ∈ ℝn,f is the derivative of a bistable potential, and ε>0 is a small parameter. Let Γ(T),T∈[0,T 0], be a one-parameter family of smooth hypersurfaces which move with the time scaleT = ε2 t according to a certain generalized mean curvature flow. It is shown that, if the initial data have an interface which is close to Γ(0), then the interface remains close to Γ(ε2 t fort ∈ [0,T 02]. Moreover, ifT 0=∞ and Γ(T) converges to a stable stationary hypersurface asT→∞, then the interface remains close to Γ(ε2 t) for allt≥0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.B. Angenent, J. Mallet-Paret and L.A. Peletier, Stable transition layers in a semilinear boundary value problem. J. Differential Equations,67 (1987), 212–242.

    Article  MATH  MathSciNet  Google Scholar 

  2. G. Barles, H.M. Soner and P.E. Souganidis, Front propagation and phase field theory. SIAM J. Control Optim.,31 (1993), 439–469.

    Article  MATH  MathSciNet  Google Scholar 

  3. K.A. Brakke, The Motion of a Surface by Its Mean Curvature. Princeton Univ. Press, Princeton, 1978.

    MATH  Google Scholar 

  4. L. Bronsard and R.V. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics. J. Differential Equations,90 (1991), 211–237

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Caginalp, Mathematical Models of Phase Boundaries. Math. Notes, Princeton University Press, Princeton, 1978.

    Google Scholar 

  6. G. Caginalp and P. Fife, Dynamics of layered interfaces arising from phase boundaries. SIAM J. Appl. Math.,48 (1988), 506–518.

    Article  MathSciNet  Google Scholar 

  7. X.-F. Chen, Generation and propagation of interfaces for reaction-diffusion equations. J. Differential Equations,96 (1992), 116–141.

    Article  MATH  MathSciNet  Google Scholar 

  8. Y.-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differential Geom.,33 (1991), 749–786.

    MATH  MathSciNet  Google Scholar 

  9. P. DeMottoni and M. Schatzman, Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc.,347 (1995), 1533–1589.

    Article  MathSciNet  Google Scholar 

  10. S.-I. Ei, M. Sato and E. Yanagida, Stability of stationary interfaces with contact angle in a generalized mean curvature flow. American J. Math.,118 (1996), 653–687.

    Article  MATH  MathSciNet  Google Scholar 

  11. S.-I. Ei and E. Yanagida, Dynamics of interfaces in competition diffusion systems. SIAM J. Appl. Math.,54 (1994), 1355–1373.

    Article  MATH  MathSciNet  Google Scholar 

  12. S.-I. Ei and E. Yanagida, Stability of stationary interfaces in a generalized mean curvature flow. J. Fac. Sci. Univ. Tokyo Sect. IA,40 (1994), 651–661.

    MathSciNet  Google Scholar 

  13. S.-I. Ei and E. Yanagida, Instability of stationary solutions for equations of curvature-driven motion of curves. J. Dynamics Differential Equations,7 (1995), 423–435.

    Article  MATH  MathSciNet  Google Scholar 

  14. L.C. Evans, H.M. Soner and P.E. Souganidis, Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math.,XLV (1992), 1097–1123.

    Article  MathSciNet  Google Scholar 

  15. L.C. Evans and J. Spruck, Motion of level set by mean curvature I. J. Differential Geom.,33 (1991), 635–681.

    MATH  MathSciNet  Google Scholar 

  16. L.C. Evans and J. Spruck, Motion of level set by mean curvature II. Trans. Amer. Math. Soc.,330 (1992), 321–332.

    Article  MATH  MathSciNet  Google Scholar 

  17. P.C. Fife, Dynamics of Internal Layers and Diffusive Interfaces. CBMS-NSF Regional Conf. Ser. in Appl. Math., SIAM, Philadelphia, 1988.

  18. P.C. Fife, Diffusive waves in nonhomogeneous media. Proc. Edinburgh Math. Soc.,32 (1989), 291–315.

    Article  MATH  MathSciNet  Google Scholar 

  19. P.C. Fife and L. Hsiao, The generation and propagation of internal layers. Nonlinear Anal.,12 (1988), 19–41.

    Article  MATH  MathSciNet  Google Scholar 

  20. P.C. Fife and L.A. Peletier, Clines induced by variable selection and migration. Proc. Roy. Soc. London, B214 (1981), 99–123.

    Article  Google Scholar 

  21. G. Fusco, On the explicit construction of an ODE which has the same dynamics as a scalar parabolic PDE. J. Differential Equations,69 (1987), 85–110.

    Article  MATH  MathSciNet  Google Scholar 

  22. G. Fusco and J.K. Hale, Stable equilibria in a scalar parabolic equation with variable diffusion. SIAM J. Math. Anal.,16 (1985), 152–164

    Article  MathSciNet  Google Scholar 

  23. M. Gage and R. Hamilton, The shrinking of convex plane curves to points. J. Differential Geom.,23 (1986), 69–96.

    MATH  MathSciNet  Google Scholar 

  24. Y. Giga and K. Yamauchi, On instability of evolving hypersurfaces. Differential Integral Equations,7 (1994), 863–872.

    MATH  MathSciNet  Google Scholar 

  25. M. Grayson, The heat equation shrinks embedded plane curves to points. J. Differential Geom.,26 (1987), 285–314.

    MATH  MathSciNet  Google Scholar 

  26. J.K. Hale and G. Raugel, Reaction-diffusion equation on thin domains. J. Math. Pures Appl.,71 (1992), 33–95.

    MATH  MathSciNet  Google Scholar 

  27. J.K. Hale and C. Rocha, Bifurcations in a parabolic equation with variable diffusion. Nonlinear Anal.,9 (1985), 479–494.

    Article  MATH  MathSciNet  Google Scholar 

  28. J.K. Hale and K. Sakamoto, Existence and stability of transition layers. Japan J. Appl. Math.,5 (1988), 367–405.

    Article  MATH  MathSciNet  Google Scholar 

  29. R.S. Hamilton, Three manifolds with positive Ricci curvature. J. Differential Geom.,17 (1982), 255–306.

    MATH  MathSciNet  Google Scholar 

  30. G. Huisken, Flow by mean curvature of convex surface into surface. J. Differential Geom.,20 (1984), 237–266.

    MATH  MathSciNet  Google Scholar 

  31. K. Kawasaki and T. Ohta, Kinetic drumhead model of interface I. Progr. Theoret. Phys.,67 (1982), 147–163.

    Article  Google Scholar 

  32. J.P. Keener and J.J. Tyson, Spiral waves in the Belousov-Zhabotinskii reaction. Physica,21D (1986), 307–324.

    MathSciNet  Google Scholar 

  33. R. Kobayashi, A numerical approach to three-dimensional dendritic solidification. Experiment. Math.,3 (1994), 59–81.

    MATH  MathSciNet  Google Scholar 

  34. H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sci. Kyoto Univ.,15 (1979), 401–454.

    Article  MATH  MathSciNet  Google Scholar 

  35. S. Miyata and E. Yanagida, Stable stationary solutions with multiple layers in a scalar parabolic equation with variable diffusion. Funkcial. Ekvac.,38 (1995), 367–380.

    MATH  MathSciNet  Google Scholar 

  36. A.S. Nascimento, Bifurcation and stability of radially symmetric equilibria of a parabolic equation with variable diffusion. J. Differential Equations,77 (1989), 84–103.

    Article  MATH  MathSciNet  Google Scholar 

  37. R.H. Nochetto, M. Paolini and C. Verdi, Optimal interface error estimates for the mean curvature flow. Preprint.

  38. M. Paolini and C. Verdi, Asymptotic and numerical analysis of the mean curvature flow with a space-dependent relaxation parameter. Asymptotic Anal.,5 (1992), 553–574.

    MATH  MathSciNet  Google Scholar 

  39. O. Penrose and P.C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D,43 (1990), 44–62.

    Article  MATH  MathSciNet  Google Scholar 

  40. J. Rubinstein, P. Sternberg and J.B. Keller, Fast reaction, slow diffusion and curve shortening. SIAM J. Appl. Math.,49 (1989), 116–133.

    Article  MATH  MathSciNet  Google Scholar 

  41. J. Stefan, Über einige probleme der theorie der wärmeletung. Sitzer. Wien. Akad. Math. Naturw.,98 11a (1889), 473–484.

    Google Scholar 

  42. E. Yanagida, Stability of stationary distributions in a space-dependent population growth process. J. Math. Biol.,15 (1982), 37–50.

    Article  MATH  MathSciNet  Google Scholar 

  43. E. Yanagida, Existence of stable stationary solutions of scalar reaction-diffusion equations in thin tubular domains. Appl. Anal.,36 (1990), 171–188.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Kyûya Masuda on his sixtieth birthday

About this article

Cite this article

Ei, SI., Iida, M. & Yanagida, E. Dynamics of interfaces in a scalar parabolic equation with variable diffusion coefficients. Japan J. Indust. Appl. Math. 14, 1–23 (1997). https://doi.org/10.1007/BF03167306

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167306

Key words

Navigation