Skip to main content
Log in

Viscosity approach to modelling non-isothermal diffusive phase separation

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

A nonlinear parabolic system with a singular evolution term, arising from modelling dynamic phenomena of the non-isothermal diffusive phase separation, is studied. The system is subject to constraints entering into the main part of one of the equations. In the paper, questions related to the existence and uniqueness of solutions to the singular problem are studied with the use of viscosity approximations. To this purpose, a special regularization technique has been applied to the singular evolution term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Alt and I. Pawlow, Existence of solutions for non-isothermal phase separation. Adv. Math. Sci. Appl.,1 (1992), 319–409.

    MATH  MathSciNet  Google Scholar 

  2. J.F. Blowey and C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy, Part I: Mathematical analysis. European J. Appl. Math.,2 (1991), 233–280.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Brézis, Opérateurs Maximaux, Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam, 1973.

    MATH  Google Scholar 

  4. H. Brézis, M.G. Crandall and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space. Comm Pure Appl. Math.,23 (1970), 123–144.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations. Comm. Partial Differential Equations,15 (1990), 737–756.

    Article  MATH  MathSciNet  Google Scholar 

  6. S.R. DeGroot and P. Mazur, Non-Equilibrium Thermodynamics. Dover Publ., New York, 1984.

    Google Scholar 

  7. E. DiBenedetto and R.E. Showalter, A pseudo-parabolic variational inequality and Stefan problem, Nonlinear Anal. TMA,6 (1982), 279–291.

    Article  MATH  MathSciNet  Google Scholar 

  8. C.E. Elliot, The Cahn-Hilliard model for the kinetics of phase separation. Mathematical Models for Phase Change Problems (J.F. Rodrigues), ISNM88, Birkhäuser, Basel, 1989, 35–73.

    Google Scholar 

  9. C.M. Elliott and S. Zheng, On the Cahn-Hilliard equation. Arch. Rational Mech. Anal.,96 (1986), 339–357.

    Article  MATH  MathSciNet  Google Scholar 

  10. N. Kenmochi and M. Niezgódka, Large time behaviour of a nonlinear system for phase separation. Progress in Partial Differential Equations: the Metz Surveys 2 (ed. M. Chipot), Pitman Research Notes Math. Ser.,296, Longman, New-York, 1993, 12–22.

    Google Scholar 

  11. N. Kenmochi and M. Niezgódka, Nonlinear system for non-isothermal diffusive phase separation, J. Math. Anal. Appl.,188 (1994), 651–679.

    Article  MATH  MathSciNet  Google Scholar 

  12. N. Kenmochi and M. Niezgódka, Systems of nonlinear parabolic equations for phase change problems, Adv. Math. Sci. Appl.,3 (1994), 87–115.

    Google Scholar 

  13. N. Kenmochi, M. Niezgódka and I. Pawlow, Subdifferential operator approach to the Cahn-Hilliard equation with constraint. J. Differential Equations,117 (1995), 320–356.

    Article  MATH  MathSciNet  Google Scholar 

  14. N. Kenmochi and I. Pawlow, A class of nonlinear elliptic-parabolic equations with time-dependent constraints. Nonlinear Anal. TMA,10 (1986), 1181–1202.

    Article  MATH  MathSciNet  Google Scholar 

  15. J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Gauthier-Villars, Paris, 1969.

    MATH  Google Scholar 

  16. J.L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications. Vol. 1. Springer-Verlag, New York, 1972–1973.

    Google Scholar 

  17. S. Luckhaus and A. Visintin, Phase transition in multicomponent systems. Manusripta Math.,43 (1983), 261–288.

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. Oono and S. Puri, Study of the phase separation dynamics by use of cell dynamical systems, I. Modelling. Phys. Rev., A38 (1988), 434–453.

    Article  Google Scholar 

  19. O. Penrose and P.C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D,43 (1990), 44–62.

    Article  MATH  MathSciNet  Google Scholar 

  20. W. Shen and S. Zheng, On the coupled Cahn-Hilliard equations. Comm. Partial Differential Equations,18 (1993), 701–727.

    Article  MATH  MathSciNet  Google Scholar 

  21. R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer Verlag, Berlin, 1988.

    MATH  Google Scholar 

  22. W. von Wahl, On the Cahn-Hilliard equationu′ + Δ2 u - Δf(u) = 0. Delft Progr. Rep.,10 (1985), 291–310.

    MathSciNet  Google Scholar 

  23. S. Zheng, Asymptotic behaviour of the solution to the Cahn-Hilliard equation. Appl. Anal.,23 (1986), 165–184.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kenmochi, N., Niezgódka, M. Viscosity approach to modelling non-isothermal diffusive phase separation. Japan J. Indust. Appl. Math. 13, 135–169 (1996). https://doi.org/10.1007/BF03167303

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167303

Key words

Navigation