Advertisement

Viscosity approach to modelling non-isothermal diffusive phase separation

  • Nobuyuki Kenmochi
  • Marek Niezgódka
Article

Abstract

A nonlinear parabolic system with a singular evolution term, arising from modelling dynamic phenomena of the non-isothermal diffusive phase separation, is studied. The system is subject to constraints entering into the main part of one of the equations. In the paper, questions related to the existence and uniqueness of solutions to the singular problem are studied with the use of viscosity approximations. To this purpose, a special regularization technique has been applied to the singular evolution term.

Key words

phase separation viscosity constraints non-isothermal 

References

  1. [1]
    H.W. Alt and I. Pawlow, Existence of solutions for non-isothermal phase separation. Adv. Math. Sci. Appl.,1 (1992), 319–409.MATHMathSciNetGoogle Scholar
  2. [2]
    J.F. Blowey and C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy, Part I: Mathematical analysis. European J. Appl. Math.,2 (1991), 233–280.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    H. Brézis, Opérateurs Maximaux, Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam, 1973.MATHGoogle Scholar
  4. [4]
    H. Brézis, M.G. Crandall and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space. Comm Pure Appl. Math.,23 (1970), 123–144.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations. Comm. Partial Differential Equations,15 (1990), 737–756.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    S.R. DeGroot and P. Mazur, Non-Equilibrium Thermodynamics. Dover Publ., New York, 1984.Google Scholar
  7. [7]
    E. DiBenedetto and R.E. Showalter, A pseudo-parabolic variational inequality and Stefan problem, Nonlinear Anal. TMA,6 (1982), 279–291.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    C.E. Elliot, The Cahn-Hilliard model for the kinetics of phase separation. Mathematical Models for Phase Change Problems (J.F. Rodrigues), ISNM88, Birkhäuser, Basel, 1989, 35–73.Google Scholar
  9. [9]
    C.M. Elliott and S. Zheng, On the Cahn-Hilliard equation. Arch. Rational Mech. Anal.,96 (1986), 339–357.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    N. Kenmochi and M. Niezgódka, Large time behaviour of a nonlinear system for phase separation. Progress in Partial Differential Equations: the Metz Surveys 2 (ed. M. Chipot), Pitman Research Notes Math. Ser.,296, Longman, New-York, 1993, 12–22.Google Scholar
  11. [11]
    N. Kenmochi and M. Niezgódka, Nonlinear system for non-isothermal diffusive phase separation, J. Math. Anal. Appl.,188 (1994), 651–679.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    N. Kenmochi and M. Niezgódka, Systems of nonlinear parabolic equations for phase change problems, Adv. Math. Sci. Appl.,3 (1994), 87–115.Google Scholar
  13. [13]
    N. Kenmochi, M. Niezgódka and I. Pawlow, Subdifferential operator approach to the Cahn-Hilliard equation with constraint. J. Differential Equations,117 (1995), 320–356.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    N. Kenmochi and I. Pawlow, A class of nonlinear elliptic-parabolic equations with time-dependent constraints. Nonlinear Anal. TMA,10 (1986), 1181–1202.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Gauthier-Villars, Paris, 1969.MATHGoogle Scholar
  16. [16]
    J.L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications. Vol. 1. Springer-Verlag, New York, 1972–1973.Google Scholar
  17. [17]
    S. Luckhaus and A. Visintin, Phase transition in multicomponent systems. Manusripta Math.,43 (1983), 261–288.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Y. Oono and S. Puri, Study of the phase separation dynamics by use of cell dynamical systems, I. Modelling. Phys. Rev., A38 (1988), 434–453.CrossRefGoogle Scholar
  19. [19]
    O. Penrose and P.C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D,43 (1990), 44–62.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    W. Shen and S. Zheng, On the coupled Cahn-Hilliard equations. Comm. Partial Differential Equations,18 (1993), 701–727.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer Verlag, Berlin, 1988.MATHGoogle Scholar
  22. [22]
    W. von Wahl, On the Cahn-Hilliard equationu′ + Δ2 u - Δf(u) = 0. Delft Progr. Rep.,10 (1985), 291–310.MathSciNetGoogle Scholar
  23. [23]
    S. Zheng, Asymptotic behaviour of the solution to the Cahn-Hilliard equation. Appl. Anal.,23 (1986), 165–184.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© JJIAM Publishing Committee 1996

Authors and Affiliations

  • Nobuyuki Kenmochi
    • 1
  • Marek Niezgódka
    • 2
  1. 1.Department of Mathematics, Faculty of EducationChiba UniversityChibaJapan
  2. 2.Interdisciplinary Centre for Mathematical and Computational ModellingWarsaw UniversityWarsawPoland

Personalised recommendations