Skip to main content
Log in

Abstract

Recently several practical variants of the classical traveling salesman problem are proposed. These variants include the traveling purchaser problem, the prize collecting traveling salesman problem, the orienteering problem, the median shortest path problem, and the covering salesman problem. The most important common characteristic of these problems is that the salesman travels the subset of customers, i.e., the tour does not necessarily visit all nodes as in the traveling salesman problem. We call this class of problems the subtour problem. In this paper, we derive several valid inequalities and show some of them are facets of the polytope of the subtour problem. Further we present several integer or mixed integer programming formulations of the subtour problem and compare these formulations in terms of bounds obtained by linear programming relaxations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Balas, Prize collecting traveling salesman problem. Networks,19 (1989), 621–636.

    Article  MATH  MathSciNet  Google Scholar 

  2. V. Chvátal, Edmonds polytopes and weakly Hamiltonian graph. Math. Programming,5 (1973), 29–40.

    Article  MATH  MathSciNet  Google Scholar 

  3. G. Clark and J.W. Wright, Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res.,12 (1964), 568–581.

    Article  Google Scholar 

  4. J.R. Current and H. Min, Multiobjective design of transportation networks: Taxonomy and annotation. European J. Oper. Res.,26 (1986), 187–201.

    Article  MathSciNet  Google Scholar 

  5. J.R. Current, C.S. Revelle and J.J. Cohon, The maximum covering/shortest path problem: A multiobjective network design and routing formulation. European J. Oper. Res.,21 (1985), 189–199.

    Article  MATH  MathSciNet  Google Scholar 

  6. J.R. Current, C.S. Revelle and J.J. Cohon, The median shortest path problem: A multiobjective approach to analyze cost vs. accessibility in the design of transportation network. Transportation Sci.,21 (1987), 188–197.

    Article  MATH  MathSciNet  Google Scholar 

  7. J.R. Current and D.A. Schilling, The covering salesman problem. Transportation Sci.,23 (1989), 208–213.

    Article  MATH  MathSciNet  Google Scholar 

  8. G.B. Dantzig, Linear Programming and Extensions. Princeton Univ. Press, 1963.

  9. G.B. Dantzig, D.R. Fulkerson and S. Johnson, Solution of a large scale traveling salesman problem. Oper. Res.,2 (1954), 393–410.

    Article  MathSciNet  Google Scholar 

  10. M. Desrochers and G. Laporte, Improvement and extensions to the Miller-Tucker-Zemlin subtour elimination constraints. Oper. Res. Lett.,10 (1991), 27–36.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Edmonds, Maximum matching and a polyhedron with 0,1-vertices. J. Res. Nat. Bur. Standards,69B (1965), 125–130.

    MathSciNet  Google Scholar 

  12. G. Finke, A. Claus and E. Gunn, A two-commodity network flow approach to the traveling salesman problem. Congr. Numer.,41 (1984), 167–178.

    MathSciNet  Google Scholar 

  13. G. Finke and A. Kusiak, Network approach to modeling of flexible manufacturing modules and cells, RAIRO,19 (1985), 359–370.

    MATH  Google Scholar 

  14. M. Fischetti, Facets of the asymmetric traveling salesman polytope. Math. Oper. Res.,16 (1991), 42–56.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Fischetti and P. Toth, An additive approach for the optimal solution of the prizecollecting traveling salesman problem. Vehicle Routing: Methods and Studies (eds. B.L. Golden and A.A. Assad), North-Holland, Amsterdam, 1988, 319–343.

    Google Scholar 

  16. M. Fischetti and P. Toth, An additive Bounding procedure for combinatorial optimization problems. Oper. Res.,37 (1989), 319–328.

    Article  MATH  MathSciNet  Google Scholar 

  17. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.

    MATH  Google Scholar 

  18. B. Gavish and S.C. Graves, The Traveling Salesman Problem and Related Problems. Working Paper, Operations Research Center, Massachusetts Inst. Tech., 1978.

  19. D.H. Gensch, An industrial application of the traveling salesman’s subtour problem. AIIE Trans.,10 (1978), 362–370.

    Google Scholar 

  20. B. Golden, A. Assad and R. Dahl, Analysis of a large scale vehicle routing problem with an inventory component. Large Scale Systems,7 (1984), 181–190.

    MATH  Google Scholar 

  21. B.L. Golden, L. Levy and R. Vohra, The orienteering problem. Naval Res. Logist.,34 (1987), 307–318.

    Article  MATH  Google Scholar 

  22. B.L. Golden, Q. Wang and L. Liu, A multi-faceted heuristics for the orienteering problem. Naval Res. Logist.,35 (1988), 359–366.

    Article  MATH  Google Scholar 

  23. M. Grötschel and M.W. Padberg, On the symmetric traveling salesman problem. I. Inequalities. Math. Programming,16 (1979), 265–280.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Grötschel and M.W. Padberg, The Traveling Salesman Problem: Chapter 8 Polyhedral theory. (eds. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys), John Wiley and Sons, New York, 1985, 252–305.

    Google Scholar 

  25. M. Grötschel and M.W. Pulleyblank, Clique tree inequalities and the symmetric traveling salesman problem. Math. Oper. Res.,11 (1986), 537–569.

    Article  MATH  MathSciNet  Google Scholar 

  26. S. Kataoka and S. Morito, Maximum collection problem. J. Oper. Res. Soc. Japan,31 (1988), 515–531.

    MATH  MathSciNet  Google Scholar 

  27. M. Kubo and H. Kasugai, A restricted Lagrangean approach to the prize collecting traveling salesman problem. Working paper, Waseda University, 1990.

  28. M. Kubo and H. Kasugai, The median shortest path problem. Working paper, Waseda University, 1991.

  29. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, The Traveling Salesman Problem. John Wiley and Sons, New York, 1985.

    MATH  Google Scholar 

  30. T. Tsiligirides, Heuristic methods applied to orienteering. J. Oper. Res. Soc.,35 (1984), 797–809.

    Article  Google Scholar 

  31. D.L. Miller and J.F. Pekny, Exact solution of large asymmetric traveling salesman problem. Science,15 (1991), 754–761.

    Article  Google Scholar 

  32. C.E. Miller, A.W. Tucker and R.A. Zemlin, Integer programming formulation of traveling salesman problems. J. Assoc. Comput. Mach.,7 (1960), 326–329.

    MATH  MathSciNet  Google Scholar 

  33. A. Langevin, F. Soumis and J. Desrosiers, Classification of traveling salesman formulations. Oper. Res. Lett.,9 (1990), 127–132.

    Article  MATH  MathSciNet  Google Scholar 

  34. G. Laporte, Generalized subtour elimination constraints and connectivity constraints. J. Oper. Res. Soc.,37 (1986), 509–514.

    Article  MATH  Google Scholar 

  35. G. Laporte and S. Martello, The selective traveling salesman problem. Discrete Appl. Math.,26 (1990), 193–207.

    Article  MATH  MathSciNet  Google Scholar 

  36. H.L. Ong, Approximate algorithms for the traveling purchaser problem. Oper. Res. Lett.,1 (1982), 201–205.

    Article  MATH  Google Scholar 

  37. M. Padberg and G. Rinaldi, A branch and bound algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Rev.,33 (1991), 60–100.

    Article  MATH  MathSciNet  Google Scholar 

  38. J.F. Pekny, D.L. Miller and G.J. McRae, An exact parallel algorithm for scheduling when production costs depends on consecutive system states. Comput. Chem. Engrg.,9 (1990), 1009–1023.

    Article  Google Scholar 

  39. P. Sokkappa, The Cost-Constrained Traveling Salesman Problem: Upper Bound Algorithms. CORS/ORSA/TIMS Joint National Meeting, Vancouver, 1989.

  40. R.T. Wong, Integer programming formulations of the traveling salesman problem. Proceedings of the IEEE International Conference of Circuit and Computers, 1980, 149–152.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kubo, M., Kasugai, H. On symmetric subtour problems. Japan J. Indust. Appl. Math. 9, 383–396 (1992). https://doi.org/10.1007/BF03167273

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167273

Key words

Navigation