Advertisement

Free boundary problem for the equation of spherically symmetric motion of viscous gas (III)

  • Šárka Matušů-Nečasová
  • Mari Okada
  • Tetu Makino
Article

Abstract

We study the spherically symmetric motion of viscous barotropic gas surrounding a solid ball. We are interested in the density distribution which contacts the vacuum at a finite radius. The equilibrium is asymptotically stable with respect to small perturbation, provided that γ > 4/3 anda is sufficiently small, when the equation of state isp = γ,p being the pressure and π the density.

Key words

Navier-Stokes equation asymptotic stability of equilibria free boundary problem spherically symmetric motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.-C. Kuan and S.-S. Lin, Numbers of equilibria of self-gravitating isentropic gas surrounding a solid ball, preprint.Google Scholar
  2. [2]
    M. Okada and T. Makino, Free boundary problem for the equation of spherically symmetric motion of viscous gas. Japan J. Indust. Appl. Math.,10 (1993), 219–235.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Š. Matušů-Nečasová, M. Okada and T. Makino, Free boundary problem for the equation of spherically symmetric motion of viscous gas (II). Japan J. Indust. Appl. Math.,12 (1995), 195–203.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    I. Straškraba, Asymptotic development of vacuums for 1-D Navier-Stokes equations of compressible flow. Preprint (Matematicky ustav,90 (1994), Akademie red ceske republiky).Google Scholar

Copyright information

© JJIAM Publishing Committee 1997

Authors and Affiliations

  • Šárka Matušů-Nečasová
    • 1
  • Mari Okada
    • 2
  • Tetu Makino
    • 2
  1. 1.Mathematical InstituteAcademy of Sciences, Czech RepublicPraha 1Czech Republic
  2. 2.Department of Applied Science, Faculty of EngineeringYamaguchi UniversityUbeJapan

Personalised recommendations