Skip to main content
Log in

Exact solutions of the Navier-Stokes equations via Leray’s scheme

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

J. Leray considered a backward self-similar solution of the Navier-Stokes equations in the hope that it gives us an example of the finite-time blow-up of the three dimensional nonstationary Navier-Stokes equations. However, he showed no example of solutions. We list here some particular solutions and discuss their fluid mechanical properties. We also consider a forward self-similar solution, which describes solutions decaying as time tends to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. Bellamy-Knights, An unsteady two-cell vortex solution of the Navier-Stokes equations. J. Fluid Mech.,41 (1970), 673–687.

    Article  MATH  Google Scholar 

  2. R. Berker, Integration des équations du mouvement d’un fluide visqueux incompressible. Handbuch der Physik,VIII/2 (1963), 1–384.

    MathSciNet  Google Scholar 

  3. K.N. Beronov, Vorticity layers in unbounded viscous incompressible flow with uniform strain. To appear in Fluid Dynamics Research, 1997.

  4. J.M. Burgers, A mathematical model illustrating the theory of turbulence. Adv. in Appl. Mech.,1 (1948), 171–199.

    Article  MathSciNet  Google Scholar 

  5. A. Carpio, Comportment asymptotique des équations du tourbillon en dimension 2 et 3. C. R. Acad. Sci. Paris,316 (1993), 1289–1294.

    MATH  MathSciNet  Google Scholar 

  6. D. Chae and P. Dubovskii, Functional and measure-valued solutions of the Euler equations for flows of incompressible fluids. Arch. Rational Mech. Anal.,129 (1995), 385–396.

    Article  MATH  MathSciNet  Google Scholar 

  7. G.-H. Cottet, Équations de Navier-Stokes dans le plan avec tourbillon initial mesure, C. R. Acad. Sci. Paris,303 Série I (1986), 105–108.

    MATH  MathSciNet  Google Scholar 

  8. G.-H. Cottet and J. Soler, Three dimensional Navier-Stokes equations for singular filament initial data. J. Differential Equations,74 (1988), 234–253.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Foias and R. Temam, Self-similar universal homogeneous statistical solutions of the Navier-Stokes equations. Comm. Math. Phys.90 (1983), 187–206.

    Article  MATH  MathSciNet  Google Scholar 

  10. W.I. Fushchich, W.M. Shetelen and N.I. Serov, Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics. Kluwer Academic Publishers, 1993.

  11. Y. Giga, T. Miyakawa, and H. Osada, Two-dimensional Navier-Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal.,104 (1988), 223–250.

    Article  MATH  MathSciNet  Google Scholar 

  12. Y. Giga and T. Kambe, Large time behavior of the vorticity of two-dimensional viscous flow and its application to vortex formation. Comm. Math. Phys.,117 (1988), 549–568.

    Article  MATH  MathSciNet  Google Scholar 

  13. Y. Giga and T. Miyakawa, Navier-Stokes flow inR 3 with measures as initial vorticity, Comm. Partial Differential Equations,14 (1989), 577–618.

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Hamel, Spiralförmige Bewegungen zäher Flüssigkeiten. Jahrsber. Duetsch. Math.-Verein.,25 (1917), 34–60.

    Google Scholar 

  15. K. Hiemenz, Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder Dinglers Polytech. J.,326 (1911), 321–4, 344–8, 357–62, 372–6, 391–3, 407–10.

    Google Scholar 

  16. F. Homann, Der Einflußgroßer Zähigkeit bei der Strömung um den Zylinder und un die Kugel. Z. Angew. Math. Mech.,16 (1936), 153–164.

    Article  MATH  Google Scholar 

  17. G.B. Jeffery, The two dimensional steady motion of a viscous fluid. Philos. Mag. S.6,29 (1915), 455–465.

    Article  Google Scholar 

  18. T. Kambe, A class of exact solutions of the Navier-Stokes equation. Fluid Dynamics Res.,1 (1986), 21–31.

    Article  Google Scholar 

  19. T. Kambe, Axisymmetric vortex solution of Navier-Stokes equation. J. Phys. Soc. Japan,53 (1984), 13–15.

    Article  MathSciNet  Google Scholar 

  20. N. Kim and D. Chae, On the uniqueness of the unbounded classical solutions of the Navier-Stokes and associated equations. J. Math. Anal. Appl.,186 (1994), 91–96.

    Article  MATH  MathSciNet  Google Scholar 

  21. N.N. Lebedev, Special Functions and Their Applications, Dover, 1972.

  22. J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math.,63 (1934), 193–248.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Majda, Vorticity and the mathematical theory of incompressible fluid flow. Comm. Pure Appl. Math.,34 (1986), S187-S220.

    Article  MathSciNet  Google Scholar 

  24. J. Nečas, M. Ružička and V. Šverák, On self-similar solutions of the Navier-Stokes equations. IMA preprint # 1317, Univ. of Minnesota.

  25. K. Ohkitani, A class of simple blow-up solutions with uniform vorticity to three dimensional Euler equations. J. Phys. Soc. Japan,59 (1990), 3811–3814: Addendum. ibid,60 (1991), 1144.

    Article  MathSciNet  Google Scholar 

  26. H. Okamoto, A uniqueness theorem for the unbounded classical solution of the nonstationary Navier-Stokes equations inR 3. J. Math. Anal. Appl.,181 (1994), 473–482.

    Article  MATH  MathSciNet  Google Scholar 

  27. C.W. Oseen, Über die Wirbelbewegung in einer reibenden Flüssigkeit. Ark. Mat. Astro. Fys.,7 (1912), N:o 14.

    Google Scholar 

  28. D.H. Peregrine, The fascination of fluid mechanics. J. Fluid Mech.,106 (1981), 59–80.

    Article  MATH  Google Scholar 

  29. G. Rosen, Navier-Stokes initial value problem for boundary-free incompressible fluid flow. Phys. Fluid,13 (1970), 2891–2903.

    Article  MATH  Google Scholar 

  30. M. Takaoka, Straining effects and vortex reconnection of solutions to the 3-D Navier-Stokes equation. J. Phys. Soc. Japan,60 (1991), 2602–2612.

    Article  MathSciNet  Google Scholar 

  31. R. von Mises and K.O. Friedrichs, Fluid Dynamics. Springer Verlag, 1971.

  32. H. Weyl, On the differential equations of the simplest boundary-layer problems. Ann. of Math.,43 (1942), 381–407.

    Article  MathSciNet  Google Scholar 

  33. E.T. Whittaker and G.N. Watson, A Course of Modern Analysis. Fourth Ed., Cambridge Univ. Press, 1927.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Okamoto, H. Exact solutions of the Navier-Stokes equations via Leray’s scheme. Japan J. Indust. Appl. Math. 14, 169–197 (1997). https://doi.org/10.1007/BF03167263

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167263

Key words

Navigation