Skip to main content
Log in

An approximate factorization/least squares solution method for a mixed finite element approximation of the Cahn-Hilliard equation

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We discuss in this article the numerical solution of the Cahn-Hilliard equation modelling the spinodal decomposition of binary alloys. The numerical methodology combines a second-order finite difference time discretization with a mixed finite element space approximation and a least squares formulation based on an approximate factorization of a fourth-order elliptic operator which appears in the numerical model. The least squares problem—which is linear—is solved by a preconditioned conjugate gradient algorithm. The results of numerical experiments illustrate the possibilities of the methods discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys.,28 (1958), 258–267.

    Article  Google Scholar 

  2. J.W. Cahn, Phase separation by spinodal decomposition in isotropic systems. J. Chem. Phys.,42 (1965), 93–99.

    Article  Google Scholar 

  3. J.S. Langer, Theory of spinodal decomposition in alloys. Ann. Physics.,65 (1971), 53–86.

    Article  Google Scholar 

  4. A. Novick-Cohen and L.A. Segal, Nonlinear aspects of the Cahn-Hilliard equation. Physica,D10 (1984), 277–298.

    MathSciNet  Google Scholar 

  5. C.M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation. Mathematical Models for Phase Change Problems (ed. J.F. Rodrigues), International Series of Numerical Mathematics,88, Birkhäuser, Basel, 1989, 35–73.

    Google Scholar 

  6. C.M. Elliott and A. Mikelic, Existence for the Cahn-Hilliard phase separation model with a nondifferentiable energy. Ann. Mat. Pura Appl.,158 (1991), 181–203.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer, Berlin, 1988.

    MATH  Google Scholar 

  8. C.M. Elliott and D.A. French, Numerical studies of the Cahn-Hilliard equation for phase separation. IMA J. Appl. Math.,38 (1987), 97–128.

    Article  MATH  MathSciNet  Google Scholar 

  9. C.M. Elliott and D.A. French, A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation. SIAM J. Numer. Anal.,26 (1989), 884–903.

    Article  MATH  MathSciNet  Google Scholar 

  10. C.M. Elliott, D.A. French and F.A. Milner, A second-order splitting method for the Cahn-Hilliard equation. Numer. Math.,54 (1989), 575–590.

    Article  MATH  MathSciNet  Google Scholar 

  11. M.I.M. Copetti and C.M. Elliott, Kinetics of phase decomposition processes: Numerical solution to the Cahn-Hilliard equation. Material Sci. Tech.,6 (1990), 273–283.

    Google Scholar 

  12. J.F. Blowey and C.F. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. Part II: Numerical analysis. European J. appl. Math.,3 (1992), 147–179.

    Article  MATH  MathSciNet  Google Scholar 

  13. M.I.M. Copetti and C.M. Elliott, Numerical analysis of the Cahn-Hilliard equation. Numer. Math.,63 (1992), 39–65.

    Article  MATH  MathSciNet  Google Scholar 

  14. C.M. Elliott and S. Larsson, Error estimates with smooth and non-smooth data for a finite element method for the Cahn-Hilliard equation. Math. Comp.,58 (1992), 603–630.

    Article  MATH  MathSciNet  Google Scholar 

  15. F. Bai, C.M. Elliott, A Gardiner, A. Spence and A.M. Stuart, The Viscous Cahn-Hilliard Equation. Part I: Computations. Manuscript SCCM-93-12, Computer Science Department, Stanford Univ., November 1993.

  16. T. Onda, Numerical analysis of phase separation based on the Cahn-Hilliard equation. IACM WCCM II, The Third World Congress in Computational Mechanics Vol. I, August 1–5, 1994, Chiba, Japan, Intern. Assoc. for Comp. Mech., 745–746.

  17. R. Glowinski, H.B. Keller and L. Reinhart, Continuation conjugate gradient method for the least squares solution of nonlinear boundary value problems. SIAM J. Sci. Statist. Comp.,6 (1985), 793–832.

    Article  MATH  MathSciNet  Google Scholar 

  18. E.J. Dean, R. Glowinski and O. Pironneau, Iterative solution of the stream function— vorticity formulation of the Stokes problem. Applications to the Numerical Simulation of Incompressible Viscous Flow. Comput. Methods Appl. Mech. Engrg.,87 (1991), 117–155.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Glowinski, J.L. Lions and R. Tremolieres, Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam 1981.

    MATH  Google Scholar 

  20. M. Fortin and R. Glowinski, Lagrangiens Augmentés. Dunod, Paris, 1982.

    Google Scholar 

  21. M. Fortin and R. Glowinski, Augmented Lagrangians. North-Hollnd, Amsterdam, 1983.

    Google Scholar 

  22. R. Glowinski and P. Le Tallec, Augmented Lagrangians and Operator Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia, 1989.

    Google Scholar 

  23. R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer, New York, 1984.

    MATH  Google Scholar 

  24. L. Reinhart, On the numerical analysis of the Von Karman equations: Mixed finite element approximation and continuation techniques. Numer. Math.,39 (1982), 371–404.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Nicolas-Carrizosa, A finite difference approach to the Kuramoto-Sivashinsky equation. Advances in Numerical Partial Differential Equations and Optimization (eds S. Gómez, J.P. Hennart, R.A. Tapia), SIAM, Philadelphia, 1991, 262–272.

    Google Scholar 

  26. P.G. Ciarlet, The Finite Element Method for Elliptic problems. North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  27. P.G. Ciarlet, Basic error estimates for elliptic problems. Handbook of Numerical Analysis, Vol. 2, Finite Element Methods (Part 1), (eds. P.G. Ciarlet and J.L. Lions), North-Holland, Amsterdam, 1991, 17–351.

    Google Scholar 

  28. P.A. Raviart and J.M. Thomas, Introduction à l’Analyse Numérique des Equations aux Dérivées Partielles. Masson, Paris, 1983.

    MATH  Google Scholar 

  29. S.C. Brenner and L.R. Scott, The Mathematical Theory of the Finite Element Method. Springer-Verlag, New York, 1994.

    Google Scholar 

  30. J.E. Roberts and J.M. Thomas, Mixed and hybrid methods. Handbook of Numerical Analysis, Vol. 2, Finite Element Methods (Part 1), (eds. P.G. Ciarlet and J.L. Lions), North-Holland, Amsterdam, 1991, 523–639.

    Google Scholar 

  31. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, 1991.

    MATH  Google Scholar 

  32. J.L. Lions, Controle Optimal des Systèmes Gouvernés par des Equations aux Dérivées Partielles. Dunod, Paris, 1968.

    MATH  Google Scholar 

  33. J. Daniel, The Approximate Minimization of Functionals. Prentice-Hall, Englewood Cliffs, New Jersey, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Dean, E.J., Glowinski, R. & Trevas, D.A. An approximate factorization/least squares solution method for a mixed finite element approximation of the Cahn-Hilliard equation. Japan J. Indust. Appl. Math. 13, 495–517 (1996). https://doi.org/10.1007/BF03167260

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167260

Key words

Navigation